Fotoneista kvantti-informaation tehostajia

04.08.2017

INRS-moni-variset-fotonit-kvantti-infromaatiolle-300-t.jpg Johtavat yritykset panostavat erittäin kalliisiin ja monimutkaisiin infrastruktuureihin vapauttaakseen kvanttiteknologioiden voiman.

Kanadalaisen National Institute of Scientific Researchin (INRS) tutkijat ovat nyt saavuttaneet läpimurron valoon tukeutuvassa fotonisessa järjestelmässä, joka on luotu käyttämällä on-chip-piirejä ja kaupallisia tietoliikenteen komponentteja.

Heidän julkaisu osoittaa, että fotoneista voi tulla tehokkaita kvanttiresursseja, kun generoidaan värilomittuneita QuDits-muotoja.

Kvanttibitit koostuvat kahden tason systeemeistä, mutta periaatteessa kvantti-informaatiossa voidaan hyödyntää laajemmankin ulottuvuuden kvanttisysteemejä. Näitä järjestelmiä, joilla on mielivaltainen määrä tasoja, kutsutaan usein quditeiksi ja niitä voidaan muodostaa, esimerkiksi fotoneista.

Tutkijoiden käyttämällä fotonisella sirulla olevaa mikrorengasresonaattoria viritetään laserilla jolloin emittoituu fotoneja pareittain. Niillä on useita päällekkäisiä taajuuskomponentteja eli värejä samanaikaisesti ja kunkin fotoniparin värit ovat linkittyneet (lomittuneet), riippumatta niiden etäisyydestä. Kukin taajuus - tai väri - edustaa moniulotteista kvanttitilaa (quDit).

Taajuusalueella toimiminen mahdollistaa useiden tilojen superpositiot. Esimerkiksi fotoni voi olla punainen ja keltainen ja vihreä ja sininen, vaikka käytetyt fotonit ovat televiestinnässä käytettyä infrapunaa. Menettely tehostaa informaation määrä yksittäisessä fotonissa.

Tähän mennessä professori Roberto Morandottin tutkijaryhmä on kehittänyt kvanttijärjestelmän, jossa on ainakin sata ulottuvuutta ja kehitetty teknologia on helposti laajennettavissa luomaan kaksi-qudittisen systeemin jossa yli 9000 dimensiota. Sellainen vastaisi 12 kvanttibittiä.

Taajuusalueen käyttö tällaisiin kvanttitiloihin mahdollistaa niiden helpon siirron ja manipuloinnin optisissa valokuitulaitteissa. ”Yhdistämällä kvanttioptiikan ja ultranopean optisen käsittelyn aloja, olemme osoittaneet, että näiden tilojen moniulotteinen manipulointi on todellakin mahdollista käyttämällä tavanomaisia tietoliikenteen elementtejä, kuten modulaattoreita ja taajuussuodattimia”, toteaa tietoliikennejärjestelmien asiantuntija, professori José Azaña.

Tutkimukseen osallistuneet Michael Kues ja Christian Reimer huomauttavat lisäksi, että demonstroidun alustan kohokohta on sen saatavuus: Se on helppo rakentaa ja hyödyntää komponentteja, joita käytetään tavallisissa kaupallisissa tietoliikennejärjestelmissä.

Siten lyhyellä aikavälillä, tutkijat ympäri maailmaa voivat sisällyttää ja puskea tätä tekniikkaa eteenpäin, mikä mahdollistaa harppauksen käytännön kvanttisovelluksien kehityksessä.

17.11.2017Kaksiulotteisilla kohti vähäkulutuksista elektroniikkaa
15.11.2017Kvanttimateriaali elektronisille innovaatioille
14.11.2017Ultranopeaa magnetismia muisteille
13.11.2017Valo elektroniikkaa kokoamaan
10.11.2017Nestemetalli vauhdittaa oksidielektroniikkaa
09.11.2017Hiilinanoputkien ohutkalvoista lämpösähköä
07.11.2017Uutta puhtia kvanttitietokoneen kehitykseen
06.11.2017Grafeeni ja transistorit
03.11.2017Kosketuksilla ja eleillä ohjaten
02.11.2017Tulostamalla nanofotoniikkaa

Siirry arkistoon »