Kaistaeroa tilauksesta

09.10.2017

UC-Santa-Barbara-kaistaeroa-tilauksesta-300-t.jpg

Keinotekoisia 2D-kiteitä

Puolijohdemateriaalien tutkijat etsivät täydellistä materiaalia ja tapaa muokata sitä saadakseen siihen täsmälleen oikean elektronisen tai optisen aktiivisuuden eli kaistaeron, joka tarvitaan tietylle sovellukselle.

Kun elektroniikan rakenteet ovat kutistuneet lähes atomien tasolle, niitä ei voi enää saada paljon pienemmiksi. Tämän ongelman kiertämiseksi tutkijat etsivät keinoja hyödyntää nanomittakaavan atomiklusteriryhmien uniikkeja ominaisuuksia - joita kutsutaan kvanttipisteiden superhiloiksi. Niihin tukeutuen voisi rakentaa seuraavan sukupolven elektroniikkaa.

UC Santa Barbaran vetämä uusi yhteistyötutkimus on saavuttanut merkittävää edistystä tarkkojen superhilamateriaalien suhteen.

Työssä käytettiin keskitettyä elektronisädettä suurialaisen kvanttipisteisen superhilanrakenteen valmistamiseksi. Siinä kaikilla kvanttipisteillä on tietty ennalta määrätty koko ja tarkka paikka kaksiulotteisen puolijohteisen molybdeeni disulfidin (MoS2) levyllä.

Elektronisäteen vuorovaikutus MoS2:n kanssa muuttaa tarkoitetut alueet puolijohtavasta metalliseksi. Näin muodostuneet kvanttipisteet voidaan sijoittaa alle neljän nanometrin etäisyydelle toisistaan siten, että niistä tulee keinotekoinen kide. Täten syntyy uudenlainen 2D-materiaali, jossa kaista-aukkoa voidaan määrittää kuin tilauksesta välillä 1,8 - 1,4 elektronivolttia (eV).

Tämä on ensimmäinen kerta, kun tiedemiehet ovat luoneet suurialaisen 2D-superhilan - nanomittakaavan atomiklusterit järjestyneessä ruudukossa - atomisesti ohuen materiaalin, jolla kvanttipisteiden kokoa ja sijaintia hallitaan.

Prosessia voidaan soveltaa myös suoraan laajamittaiseen 2D-kvanttipiste superhilan valmistamiseen. "Siksi voimme muuttaa 2D-kiteen yleisiä ominaisuuksia", toteaa professori Kaustav Banerjee.

Kvanttipisteisiä superhiloja on tutkittu aiemminkin tässä tarkoituksessa mutta ne on tehty alhaalta ylöspäin -menetelmillä, joissa atomit yhdistyvät luonnollisesti ja spontaanisti makro-objektin muodostamiseksi. Näillä menetelmillä on kuitenkin vaikea saada hilarakenne halutunlaiseksi.

Tutkijoiden ylhäältä alas lähestymistapa voittaa satunnaisuuden ja sillä saa superhilan pisteet niin lähelle toisiaan, että elektronit ovat yhteen kytkeytyneitä, mikä on tärkeä vaatimus kvanttilaskennalle.

20.06.2018Kvanttitilan siirto ja kvantti-internetti
18.06.2018Vertikaalinen tehotransistori galliumoksidista
15.06.2018Langatonta tehonsiirtoa syvälle kehoon
14.06.2018Piilaser saa tehonsa ääniaalloilla
13.06.2018Kvantti-interferenssi voi olla avain pienempiin eristeväleihin
12.06.2018Topologiaa ja suprajohtavuutta
11.06.2018Nanolangoilla lämpö sähköksi tehokkaammin
08.06.2018Harvinainen alkuaine materiaaliksi nopealle elektroniikalle
07.06.2018Keinotekoinen ihon kaltainen hermojärjestelmä
06.06.2018Kytkin spinvirralle

Siirry arkistoon »