Kvanttimateriaali elektronisille innovaatioille

15.11.2017

Akatemia-kvanttimateriaali-3D-el-materiaaleille-350-t.jpgOptiikassa on jo vuosisatojen ajan tiedetty, että valo kulkee nopeinta reittiä. Jos väliaineilla luotu valon tuntema geometria on kaareva, valon säteet kulkevat käyräviivaista reittiä. Esimerkiksi optisissa näkymättömyysrakenteissa säteet kiertävät kätketyn esineen.

”Vastaavan toiminnallisuuden toteuttaminen elektroniikan järjestelmissä voisi mullistaa koko tutkimusalan”, kuvailee Teemu Ojanen yhdessä Alex Westström kanssa Aalto-yliopistossa tehdyn tutkimustyön tulevaisuutta.

Työssään Ojanen ja Westström mallintavat varauksenkuljettajien manipuloitua liikettä Weylin metamateriaaleissa. Varauksenkuljettajien liikettä voi ohjailla luomalla toivottu geometria materiaaliin.

“Ehdottamamme materiaali, jossa varauksenkuljettajat liikkuvat kuten relativistiset hiukkaset kaarevassa avaruudessa, on pienoiskokoinen testilaboratorio kaarevan avaruuden kvanttifysiikalle ja kosmologian ilmiömaailmalle”, kiteyttää Alex Westström.

Weylin semimetallit ovat aktiivisesti tutkittuja puolijohdemateriaaleja. Koska aineen varauksenkuljettajat käyttäytyvät valon nopeudella liikkuvien massattomien hiukkasten kaltaisesti, niiden liike muistuttaa Einsteinin erityisen suhteellisuusteorian fysiikkaa. Weylin metamateriaaleissa varauksen kuljettajat liikkuvat kaarevassa avaruudessa ja imitoivat yleisen suhteellisuusteorian ilmiömaailmaa.

“Weylin metamateriaalit tarjoavat teoreettisen mahdollisuuden täysin uuden tyyppisiin elektroniikan sovelluksiin, kuten optiikasta tuttuihin fokusoiviin linsseihin”, toteaa Aalto-yliopiston dosentti Teemu Ojanen.
18.10.2018Taajuuskampa, laser ja resonaattori samalle piirille
17.10.2018Valon ja aineen vuorovaikutuksia kaksiulotteisissa
16.10.2018Erittäin ohuita antenneja
15.10.2018Valolla ohjattavia moottoreita ja roottoreita
12.10.2018Tarkempaa kasvihuonekaasujen analyysiä
11.10.2018Tehokkaampaa salaustekniikkaa
10.10.2018Uusi konsepti polttokennoille
09.10.2018Taipuisaa elektroniikkaa arvokkaista materiaaleista
08.10.2018Mikroelektroniikan ja biologisten rajan ylittäen
05.10.2018Miljoona kertaa nopeampaa tietotekniikkaa

Siirry arkistoon »