Yhdistelmä spintroniikkaa ja nanofotoniikkaa

05.02.2018

TU-Delft-spintroniikka-ja-nanofotoniikka-2D-materiaaleissa-300.jpgTU Delftin tutkijat yhdistävät spintroniikan ja nanofototoniikan 2D materiaaliin. He ovat löytäneet keinon muuttaa spin-informaation ennustettavaksi valosignaaliksi huoneenlämmössä.

Havainto voi johtaa energiataloudelliseen datankäsittelytapaan, esimerkiksi datakeskuksissa.

Tutkimus rakentui nanokonstruktion ympärille, joka koostui kahdesta osasta: erittäin ohut hopeasäie ja 2D-materiaali volframidisulfidi. Hopeasäie kiinnitettiin volframidisulfidille, jonka paksuus oli vain neljä atomia. Ympyräpolarisoidun valon avulla he loivat eksitoneja, jolla on tietty pyörimissuunta. Tämä spinin suunta voitiin alustaa käyttämällä laservalon pyörimissuuntaa.

Eksitonit ovat elektroneita, jotka pomppivat pois kiertoradoiltaan. Tämän tekniikan avulla lasersäde varmistaa, että elektronit lanseerataan laajemmalle kiertoradalle positiivisesti varautuneen aukon ympärille.

Näin syntyneet eksitonit haluavat palata alkuperäiseen tilaansa ja sen tehdessään, ne emittoivat energiapakkauksen valon muodossa. Tämä valo sisältää spin-informaation, mutta se emittoituu kaikissa suunnissa.

Jotta spin-informaatio voidaan ottaa käyttöön, Delftin tutkijat tukeutuivat aikaisempiin löytöihinsä. He olivat osoittaneet, että kun valo liikkuu pitkin nanolankaa, siihen liittyy pyörivä sähkömagneettinen kenttä, joka on hyvin lähellä lankaa: se pyörii lankaosan toisella puolella myötäpäivään ja toisella puolella vastapäivään.

Joten sähkömagneettisen kentän paikallinen pyörimissuunta lukittuu yksikäsitteisesti suuntaan, jolla valo kulkee lankaa pitkin. Näin syntyy suora linkki spin-informaation ja valon etenemissuunnan välillä.

Tällä tavoin herkkä spin-informaatio voidaan helposti muuttaa valosignaaliksi ja kuljettaa paljon pidemmälle etäisyydelle. Tämän tekniikan ansiosta, joka toimii huoneen lämpötilassa, voit helposti tehdä uutta optoelektronista piiritekniikka, toteavat tutkijat.
21.04.2021Fotoninen MEMS-kytkin kaupallistuu
20.04.2021Kaksiulotteista suprajohtavuutta kolmiulotteisessa suprajohteessa
19.04.2021Valoa läpi kannon ja kiven
16.04.2021Grafeeni ja terahertsit
15.04.2021Eksotiikkaa maagisen kulman grafeenissa
14.04.2021Uusi näkemys akkumateriaalin roolista
13.04.2021Alumiinianodi tarjoaa kestävän vaihtoehdon
12.04.2021Maailman nopein spintroninen p-bitti
09.04.2021Kohti atomipohjaista radioviestintää
08.04.2021Antiferromagneettinen läpimurto

Siirry arkistoon »