Elektronien poukkoilua kaksiulotteisissa

15.02.2018

Arizona-elektronien-zippailua-Calley-Eads-300-t.jpgPiin ominaisuuksien tullessa loppuun käytetyksi tutkijat etsivät uusia vähemmän tehoa kuluttavia mahdollisuuksia spintroniikasta. Se perustuu elektronien spinien suuntautumisen ominaisuuteen käsitellä ja tallentaa informaatiota.

Tässä tarkoituksessa University of Arizonan tieteilijä tutkivat siirtymämetallin dikalgokeenejä tai TMD. Useimmat TMD:t osoittavat ominaisuuksiaan vain suurilla mutta vain yhden tai kolmen atomin ohuilla arkeilla. Niitä on vaikeita valmistaa laboratoriossa, puhumattakaan teollisesta massatuotannosta.

Tohtoritutkijan Calley Eadsin neuvonantajan professori Oliver Montin tutkijaryhmä löysi äskettäin vaihtelevista tina- ja rikki kerroksista koostuvan vaihtoehdon, joissa ei tarvitse mennä atomisiin ohutlevyihin.

Tutkiakseen miten elektronit liikkuvat näissä materiaaleissa, tutkijat kehittivät "ajanottokellon", joka mahdollistaa liikkuvien elektronien seurannan attosekuntien tarkkuudella. Lisäksi apuun tarvittiin laskennallinen fyysikko ja Stanfordin yliopiston SLAC:n röntgenspektroskopiaa ja asiantuntemusta.

Vahvalla röntgensäteilylähteellä nostettiin yksittäisiä elektroneja erittäin korkealle energiatasolle. Sen palatessa alkuperäiseen energiatasoonsa se tuottaa nimenomaisen signatuurin, jonka voi kaapata. Lisäksi tutkijat pystyivät erottamaan sen, olivatko elektronit samassa materiaalikerroksessa vai levisivätkö ne päällekkäisiin kerroksiin kiteen läpi.

Tutkijat näkivät elektronien virittyvän tällä tavoin siroten samassa kerroksessa äärimmäisen nopeasti, muutaman sadan attosekunnin ajassa. Sen sijaan elektronit, jotka ylittivät vierekkäiset kerrokset, kesti yli 10 kertaa pidempään palata perusenergian tilaansa. Tämä ero antaa tutkijoille mahdollisuuden erottaa toisistaan kaksi populaatiota.

"Olin todella innoissani löydettyäni tämä suunnallisen mekanismin, jossa varausten jakautuminen tapahtuu kerroksessa toisin kuin kerrosten läpi", kertoo tutkimuspaperin johtava kirjoittaja Calley Eads. "Tällaista ei ollut koskaan ennen havaittu."

Tämä suuntaavuus on esimerkki siitä, mikä tekee TMD:stä kiehtovan tutkijoille, koska sitä voidaan käyttää informaation koodaamiseen. Esimerkiksi piistä ei löydy tällaista suuntaavuutta.

TMD-materiaaleissa insinöörit voisivat manipuloida elektroneja myös valolla, kuten laserilla, kirjoittaen, lukien ja käsittelen informaatiota optisesti. Ja ehkä jonain päivänä voi jopa tulla mahdolliseksi optisesti lomittaa informaatiota, avaten tietä kvantti-laskentaan arvioivat tutkijat.
27.03.2024Kvantti-interferenssi ja transistori
26.03.2024Robotti tarttuu lihanpalaan ja keskustelee kaverinsa kanssa
25.03.2024Piin kanssa yhteensopivia magneettisia pyörteitä
23.03.2024Kaksitoiminen katalyytti tekee sen halvemmalla
22.03.2024Hiilinanoputket käyttöön
21.03.2024Fotonisirut valtaavat alaa
21.03.2024Uusi 2D-materiaalien maailma on avautumassa
19.03.2024Suprajohteet auttavat tietokoneita "muistamaan"
18.03.2024Kvanttimateriaalitutkimuksen uudet työkalut
16.03.2024Räjähtämätön vedyntuotantomenetelmä

Siirry arkistoon »