Vanha idea tehokkaasta akusta osoittautui todeksi

09.03.2018

Berkely-vanha-akku-kemia-vahvistus-300-t.jpgTutkijat ovat löytäneet mangaanin kemiallisen tilan, jota on ehdotettu ensimmäisen kerran noin 90 vuotta sitten, mahdollistavan tehokkaan ja edullisen natrium-ioni akun, joka pystyy nopeasti ja tehokkaasti varastoimaan ja jakamaan aurinkopaneeleiden ja tuuliturbiinien tuottaman energian sähköverkon yli.

Tutkimukseen osallistui Berkeley Labin ja New Yorkin yliopiston tutkijoita ja se tehtiin kalifornialaisen Natron Energyn akuilla. Testiin toimitetuilla akuilla on epätavallinen anodimuoto. Se koostuu aineseoksesta, joka sisältää mangaania, hiiltä ja typpeä.

Tyypillisesti litium-ioni- ja natrium-ioniakuissa anodi on hiilipohjainen mutta tässä tapauksessa akun molemmat elektrodit käyttävät samantyyppisiä materiaaleja eli siirtymämetalleja. Ne ovat käyttökelpoisia kemian suhteen, koska ne voivat esittää erilaisia varautuneita tiloja. Katodi sisältää kuparia, typpeä, hiiltä ja rautaa.

"Erittäin mielenkiintoinen osa tässä on se, että molemmat elektrodit perustuvat siirtymämetallien kemikaaleihin samantyyppisissä materiaaleissa, katodilla raudalla ja anodilla erityisellä mangaanikemikaalilla."

"Yksi tästä seuraava hyöty on, että kumpikaan näistä elektrodeista ei periaatteessa rajoita laitteen kykyä, käyttöikää tai kustannuksia", toteaa Natron Energyn toimitusjohtaja Colin Wessells. Wessells lisää, että akku on erittäin vakaa, sen materiaalit ovat yleisiä ja kokonaiskustannukset ovat kilpailukykyisiä perinteisten lyijyakkujen kanssa ja niillä on vähemmän ympäristövaikutuksia kuin perinteisillä akuilla.

Akku tarjoaa vaihtoehdon sähköverkon painovoimaisille energian varastointijärjestelmille, joissa vesi pumpataan ylös ja vapautetaan sitten alas sähkön kysynnän myötä.

Avain siihen miten akku saavuttaa hyvän suorituskykynsä, on kuitenkin hämmentynyt tutkijoita.

Spekulointina vuodelta 1928 saksalaisessa artikkelissa oli, että mangaani voisi esiintyä niin sanotussa "1-plus-" tai "yksiarvoisessa" tilassa, mikä tarkoittaa, että mangaaniatomi tässä tilassa menettää vain yhden elektronin. Tyypillisesti mangaaniatomien tiedetään luovuttavan kaksi tai useamman elektronin tai ei ollenkaan kemiallisissa reaktioissa, mutta ei vain yhtä.

Tällainen uusi kemiallinen tila mahdollistaisi jännitealueen, joka on hyödyllinen akun anodeille. Mutta ei ole ollut mittauksia, jotka vahvistaisivat tämän monovalenttisen mangaanin muodon.

Natron Energy-tutkijat tutkivat Berkeley Labin erikoislaitteilla akkua ja ensin tulokset olivat tavanomaisempia mutta aivan uudenlaiseen IRIXS-tekniikalla yksiarvoinen mangaani löytyi.

Ilmeni myös, että mangaani-1-plus käyttäytyy hyvin samalla tavoin kuin 2-plus-tila tavanomaisissa spektroskopiamittauksissa", minkä vuoksi sitä oli vaikea havaita näiden monien vuosikymmenien ajan.

Natron Energyn testattuihin akkuihin perustuvat kaupalliset prototyypit ovat jo menneet asiakkaiden beeta-testaukseen, kertoo Wessells. Jakeluverkkosovellusten lisäksi Natron Energy panostaa tietokonekeskusten hätätehon teknologiaan sekä raskaisiin laitteisiin, kuten sähkötrukkeihin.

Berkeley Labin Wanli Yang kommentoi, että uudessa tutkimuksessa ratkaistu kemikaalien palapeli voisi innostaa muita etsimään uusia akkuelektrodeja. "Akun toiminta voisi ajaa epätyypillisten kemiallisten tilojen syntymistä, joita ei ole perinteisessä ajattelussa. Tämä perustavanlaatuinen ymmärrys voisi aiheuttaa muita uusia muotoja ja avata silmämme tavanomaisen elektrodimateriaalien viisauden yli, hän totesi.
20.06.2018Kvanttitilan siirto ja kvantti-internetti
18.06.2018Vertikaalinen tehotransistori galliumoksidista
15.06.2018Langatonta tehonsiirtoa syvälle kehoon
14.06.2018Piilaser saa tehonsa ääniaalloilla
13.06.2018Kvantti-interferenssi voi olla avain pienempiin eristeväleihin
12.06.2018Topologiaa ja suprajohtavuutta
11.06.2018Nanolangoilla lämpö sähköksi tehokkaammin
08.06.2018Harvinainen alkuaine materiaaliksi nopealle elektroniikalle
07.06.2018Keinotekoinen ihon kaltainen hermojärjestelmä
06.06.2018Kytkin spinvirralle

Siirry arkistoon »