Läpimurtoja atominohuissa magneeteissa

11.04.2018

Cornell-atomin-ohuita-magneetteja-halliten-300-t.jpgCornellin yliopiston tutkijat ovat ensimmäisinä onnistuneet hallitsemaan atomisesti ohutta magneettia sähkökentällä. Se on läpimurto, joka tarjoaa suunnitelman tehokkaalle datan tallennukselle tietokonepiireissä monien muiden sovelluksien ohessa.

Vuonna 1966 Cornellin David Mermin ja Herbert Wagner teoretisoivat, että 2D-magneetteja ei voinut esiintyä, jos niiden elektronien spinit osoittaisivat mihin tahansa suuntaan. Vasta vuonna 2017 löydettiin ensimmäiset 2D-materiaalit, joilla oli yhdensuuntaiset spinit. Näin syntyi uusi 2D van der Waals -magneettien materiaaliryhmä.

Nyt tutkijat Jie Shan ja Kin Fai Mak pinosivat kaksi atomikerrosta kromi-trijodidia atomisesti ohuiden porttieristeen ja elektrodien kanssa. Tämä loi kenttävaikutuslaitteen, joka voi kääntää elektronin spin-suuntaa kromi-trijodidi -kerroksissa pienellä hilajännitteitä ja näin aktivoiden magneettikytkentää.

Nykyisin magneettikenttiä hallitaan tehoa kuluttavilla ja lämpöä tuottavilla keloilla. Kaksiulotteisia kromi-trijodidi magneetteja voidaan aktivoida tehokkaasti koska esimerkiksi yhden voltin kenttä kohdistuu yhtä nanometriä kohden.

Prosessi on käännettävissä ja toistettavissa alle 57 Kelvinin lämpötiloissa. Jatkossa on tarkoitus löytää sellaisia kaksiulotteisia magneettimateriaaleja, jotka voivat toimia huoneenlämmössä toisin kuin kromi-trijodidi. Eristemateriaalit ovat yleensä magneettisia vain erittäin alhaisissa lämpötiloissa.

Groningenin yliopiston fyysikot ovat jo ehtineet indusoimaan magnetismia huonelämpöisen platinan ohutkalvoon ja näin luoneet vaihtokytkettävän 2D-ferromagneetin.

Tutkijat rakensivat laitteen, jolla saattoi indusoida ferromagneettisuutta normaalisti ei-magneettisessa platinassa käyttämällä kenttävaikutusta, jonka synnytti ionisen väliaineen kautta toimiva portti.

Sähkökenttä saa ionit siirtymään platinan pinnalle, jossa ne kantavat sekä varausta että magneettista momenttia. Näiden molempien hallinta samanaikaisesti olisi omiaan erityisesti spintronisissa sovelluksissa.

19.04.2018Tera- ja petabittistä datansiirtoa kuiduissa
18.04.2018Bioantureita kuparista ja grafeenioksidista
16.04.2018Fotoniikalla vauhdittaen
13.04.2018Uusia ulottuvuuksia suprajohteille
12.04.2018Kohina tehostaa heikkoja signaaleja
11.04.2018Läpimurtoja atominohuissa magneeteissa
10.04.2018Magnesium-metalli -akulle uusi tie
09.04.2018Muovi ja virukset lämmönjohteiksi
06.04.2018Spintroniikkaa piuhaan
05.04.2018Uusi kvanttielektroninen materiaali

Siirry arkistoon »