Uusi anodi ja katodi litiumakuille

20.04.2018

Cornell-tina-avuksi-akkuihin-300-t.jpgLitiumioniakkujen varauskykyä rajoittavia grafiittianodeja pyritään korvaaman litium tai natriumversioilla. Mutta alkalimetallit ovat hyvin reaktiivisia perinteisten akkuelektrolyyttien kanssa, mikä voi johtaa dendriittien muodostumiseen.

Ryhmä insinöörejä Cornell Energy Systems Instituten johdolla ovat osoittaneet kustannustehokkaan tavan stabiloida litium- ja natriumanodeja käyttäen tinaa suojaavana rajapintana anodin ja akun elektrolyytin välillä.

Kun tinaa lisätään akun karbonaattipohjaiseen elektrolyyttiin, alkalimetalliselle anodille muodostuu hetkessä keinotekoinen rajapinta, joka nanometrin paksuisensa suojaa anodia ja pitää sen sähkökemiallisesti aktiivisena.

Vakauttamisen lisäksi rajapinta lisää myös varastointikapasiteettia ja sitä on toisin kuin muita keinotekoisia rajapintamateriaaleja helpompi käyttää valmistusprosessin aikana.

Litium-anodin tinarajapinnan testaus tuotti akun elinkaareksi yli 500 tuntia kun virta-arvo on 3 milliampeeria neliösenttimetrillä. Kun testi toistettiin ilman suojarajapintaa ja akku kesti vain 55 tuntia. Natriumanodilla 10 tunnin käyttöikä kasvoi tinan avulla 1700 tuntiin.

Eroon koboltista

Litiumakkuihin käytetään nykyään yli 50 prosenttia kaikesta maailmassa tuotetusta koboltista. Suurin osa siitä tuotetaan Kongossa, jossa kaivuutyöhön käytetään jopa lapsityövoimaa.

Berkeleyn Kalifornian yliopiston johtama tutkimusryhmä on osoittanut tien käyttää muita metalleja litiumakuissa ja rakentanut katodit, joissa on 50 prosenttia enemmän litiumin varastointikapasiteettia kuin perinteisillä materiaaleilla.

Litiumpohjaisissa akuissa litiumionit varastoidaan katodeihin, jotka ovat kerrostettuja rakenteita. Koboltti on tärkeä tämän kerrostetun rakenteen ylläpitämiseksi.

Vuonna 2014 tutkijat löysivät keinon, jolla katodit voivat ylläpitää suurta energiatiheyttä ilman kerroksia, konseptilla, jota kutsutaan epäjärjestyneiksi kivisuoliksi. Uusin tutkimus osoittaa, miten mangaani voi toimia tämän konseptin sisällä, mikä on lupaava askel pois koboltista.

Löydetyt epäjärjestykselliset katodit antavat mahdollisuuden toimia paljon laajemman jaksoittaisen taulukon ainevalikoiman parissa, toteavat tutkijat. Esimerkiksi mangaani on runsaampi alkuaine kuin koboltti.

Katodin suorituskyky mitataan wattitunteina kiloa kohden. Epäjärjestykselliset mangaanikatodit lähestyivät 1000 wattituntia kilogrammaa kohden. Tyypilliset litiumionikatodit omaavat 500 - 700 wattituntia kilogrammaa kohden.

Aiheesta aiemmin:

Elektrodeina pii ja rikki

24.04.2024Akku ja superkonkka yhteen soppii
23.04.2024Kaareva datalinkki esteitä ohittamaan
22.04.2024Kvanttimateriaali lupaa uutta puhtia aurinkokennoille
21.04.2024Läpimurto lupaa turvallista kvanttilaskentaa kotona
20.04.2024Yksi atomikerros kultaa ja molekyylikorjaaja
19.04.2024Uusia ja yllättäviä topologiota
18.04.2024Kvanttivalo syntyy renkaassa ja lähtee kiertueelle
17.04.2024Fononit ja magnonit kaveraavat
16.04.2024E-nenälle ihmisen tasoinen hajuaisti
15.04.2024Valo valtaa alaa magnetismissa

Siirry arkistoon »