Nanolangoilla lämpö sähköksi tehokkaammin

11.06.2018

Warwick-lamposahko-1D-langassa-300-t.jpgNew Warwickin yliopiston tutkimuksen mukaan lämpöä voidaan muuttaa sähköksi tehokkaammin käyttämällä atomin ohuita nanolankoja.

Warwickin fysiikan laitoksen tutkijat yhteistyössä Cambridgen ja Birminghamin yliopistojen kanssa ovat havainneet, että tehokkaimmat lämpösähköiset materiaalit voidaan toteuttaa muotoilemalla ne ohuimmiksi mahdollisiksi nanolangoiksi.

Tohtori Andrij Vasylenko, Warwickin yliopiston fysiikan laitokselta kommentoi: "Päinvastoin kuin kolmiulotteinen materiaali, eristetyt nanolangat johtavat vähemmän lämpöä ja enemmän sähköä samanaikaisesti. Nämä ainutlaatuiset ominaisuudet antavat ennennäkemättömän tehokkuuden lämmön/sähkön muuntamisesta yksidimensionaaleissa materiaaleissa."

Yhdistetyssä teoreettisessa ja kokeellisessa tutkimuksessa he kykenivät paitsi määrittämään suoran riippuvuuden mallin koosta ja nanorakenteesta saadusta rakenteesta, mutta myös osoittamaan, kuinka tätä tekniikkaa voidaan käyttää termosähköisen tehokkuuden säätelyyn tinatelluridin muokatussa nanolangassa, joiden halkaisija on 1-2 atomia.

Tutkijoiden mukaan tämä avaa mahdollisuuden uuden sukupolven lämpösähköisten generaattoreiden luomiseen, mutta myös vaihtoehtoisten ehdokasmateriaalien etsimiseen termosähköisille runsaiden ja myrkyttömien kemiallisten alkuaineiden joukosta."

Toisaalla MIT:n tutkijat ovat löytäneet keinon lisätä merkittävästi lämpösähköistä tehokkuutta topologisten puolimetallien tutkimuksen kautta.

Päinvastoin kuin useimmilla kiinteillä materiaaleilla topologisilla puolimetalleilla ei ole kaistaeroa. Se mahdollistaa elektronien siirtymisen helposti korkeampiin energiakaistoihin kuumennettaessa. Mutta myös aukot kerääntyvät materiaalin kylmälle puolelle ja siten kumoavat elektronien vaikutuksen mikä tuottaa lopulta hyvin vähän energiaa.

Tutkimuksissa, jotka eivät liittyneet toisiinsa, huomattiin että vahvassa magneettikentässä elektronit ja aukot voi saada liikkumaan vastakkaisiin suuntiin. Magneettikentän tosin pitää olla äärimmäisen vahva ja tutkijoiden seuraava tavoite onkin toteuttaa ilmiö realistisimmilla magneettikentillä.

21.02.2019Monimuotoisia kaksiulotteisia
20.02.2019Huonelämpöinen alusta kvanttiteknologialle
19.02.2019Lisäkalvo tekee litiumioniakuista turvallisia
18.02.2019Uusia materiaaleja elektroniikalle
15.02.2019Elektronien nestettä huonelämpötilassa
14.02.2019Parempaa orgaanista seostusta ja rajapintoja
13.02.2019Eksitoneja, bieksitoneja ja polaritoneja samassa materiaalissa
12.02.2019Muistitekniikan kehityssuuntia
11.02.2019Vähemmän kohinaa
08.02.2019Protoneista akkujen varausten siirtäjä?

Siirry arkistoon »