Nanolangoilla lämpö sähköksi tehokkaammin

11.06.2018

Warwick-lamposahko-1D-langassa-300-t.jpgNew Warwickin yliopiston tutkimuksen mukaan lämpöä voidaan muuttaa sähköksi tehokkaammin käyttämällä atomin ohuita nanolankoja.

Warwickin fysiikan laitoksen tutkijat yhteistyössä Cambridgen ja Birminghamin yliopistojen kanssa ovat havainneet, että tehokkaimmat lämpösähköiset materiaalit voidaan toteuttaa muotoilemalla ne ohuimmiksi mahdollisiksi nanolangoiksi.

Tohtori Andrij Vasylenko, Warwickin yliopiston fysiikan laitokselta kommentoi: "Päinvastoin kuin kolmiulotteinen materiaali, eristetyt nanolangat johtavat vähemmän lämpöä ja enemmän sähköä samanaikaisesti. Nämä ainutlaatuiset ominaisuudet antavat ennennäkemättömän tehokkuuden lämmön/sähkön muuntamisesta yksidimensionaaleissa materiaaleissa."

Yhdistetyssä teoreettisessa ja kokeellisessa tutkimuksessa he kykenivät paitsi määrittämään suoran riippuvuuden mallin koosta ja nanorakenteesta saadusta rakenteesta, mutta myös osoittamaan, kuinka tätä tekniikkaa voidaan käyttää termosähköisen tehokkuuden säätelyyn tinatelluridin muokatussa nanolangassa, joiden halkaisija on 1-2 atomia.

Tutkijoiden mukaan tämä avaa mahdollisuuden uuden sukupolven lämpösähköisten generaattoreiden luomiseen, mutta myös vaihtoehtoisten ehdokasmateriaalien etsimiseen termosähköisille runsaiden ja myrkyttömien kemiallisten alkuaineiden joukosta."

Toisaalla MIT:n tutkijat ovat löytäneet keinon lisätä merkittävästi lämpösähköistä tehokkuutta topologisten puolimetallien tutkimuksen kautta.

Päinvastoin kuin useimmilla kiinteillä materiaaleilla topologisilla puolimetalleilla ei ole kaistaeroa. Se mahdollistaa elektronien siirtymisen helposti korkeampiin energiakaistoihin kuumennettaessa. Mutta myös aukot kerääntyvät materiaalin kylmälle puolelle ja siten kumoavat elektronien vaikutuksen mikä tuottaa lopulta hyvin vähän energiaa.

Tutkimuksissa, jotka eivät liittyneet toisiinsa, huomattiin että vahvassa magneettikentässä elektronit ja aukot voi saada liikkumaan vastakkaisiin suuntiin. Magneettikentän tosin pitää olla äärimmäisen vahva ja tutkijoiden seuraava tavoite onkin toteuttaa ilmiö realistisimmilla magneettikentillä.

15.11.2018Etsausta 2D-materiaaleilla
14.11.2018Nanotason magnetismin näkymiä
13.11.2018Akkutekniikka monipuolistuu
12.11.2018Kvanttikompassi mahdollistaa navigoinnin ilman satelliitteja
09.11.2018Suunnan tunnistava valopikseli
08.11.2018Kvanttitietokoneiden kohinaa vähentäen
07.11.2018Kvanttivalolähteitä sirulle
06.11.2018Läpinäkyvä joustava materiaali silkistä ja nanoputkista
05.11.2018Vetyä ja sähköä samanaikaisesti
02.11.2018Integroidun kvanttipiirin toiminta mahdollista

Siirry arkistoon »