Uusi lasertekniikka kemian antureille

17.12.2018

TU-Wien-laser-mikrosiru-kemia-sensori-300.jpgEräs tyyppi lasereita tuottaa taajuuskampatyyppisen värien kirjon tasaisin välein. Tällaiset taajuuskammat sopivat hyvin erilaisten kemiallisten aineiden havaitsemiseen.

Technische Universität Wienissä (TU Wien) taajuuskampalaser on saatu erittäin pieneen tilaan, jolloin voidaan puhua millimetrien kokoisesta kemian analyysilaitteesta.

Tämän uuden patentoidun tekniikan avulla taajuuskammat voidaan luoda yhdellä sirulla hyvin yksinkertaisella ja kestävällä tavalla.

Tekniikan avulla on helppo rakentaa spektrometri kahdella taajuuskammalla", kertoo tutkimushanketta johtanut Benedikt Schwarz. "On mahdollista käyttää eri taajuuksien välisiä iskuja, jotka ovat samankaltaisia kuin akustiikka, jos kuuntelette kahta erilaista ääntä samankaltaisella taajuudella. Käytämme tätä uutta menetelmää, koska se ei vaadi liikkuvia osia ja antaa meille mahdollisuuden kehittää pienikokoinen kemian laboratorio millimetrien mitoilla."

Wienin teknillisessä yliopistossa taajuuskammat tuotetaan kvanttiakaskadilaserilla. Nämä erikoislaserit ovat puolijohdekomponentteja, jotka koostuvat monista eri kerroksista. Kun sähkövirta ajetaan rakenteen läpi, laser emittoi valoa infrapuna-alueella. Valon ominaisuuksia voidaan hallita säätämällä kerrosrakenteen geometriaa.

"Tietyn taajuisella sähköisen signaalin avulla pystymme hallitsemaan kvanttiakaskadilaseriamme ja saada sen emittoimaan sarjan valotaajuuksia, jotka kaikki koplataan yhteen", kertoo julkaisun ensimmäinen kirjoittaja Johannes Hillbrand.

"Järjestelmämme on vankka, joten sillä on ratkaiseva etu verrattuna kaikkiin muihin taajuuskampatekniikoihin: se voidaan helposti miniaturisoida. Emme tarvitse linssijärjestelmiä, ei liikkuvia osia eikä optisia isolaattoreita, joten tarvittavat rakenteet ovat pieniä. Koko mittausjärjestelmä voidaan sijoittaa millimetrien sirulle," toteaa Benedikt Schwarz yliopistonsa tiedotteessa.

Koska kvantti-kaskadilaser taajuuskampa tuottaa infrapunan alueella olevaa valoa sen avulla voidaan monet tärkeimmistä molekyyleistä havaita parhaiten.

Erilaiset ilman epäpuhtaudet, mutta myös biomolekyylit, joilla on tärkeä tehtävä lääketieteellisessä diagnostiikassa, absorboivat erittäin spesifisiä infrapunan säteilytaajuuksia. Tätä kutsutaan usein molekyylien optisiksi sormenjäljiksi.

Aiheesta aiemmin:

Edullinen kemiallinen laseranturi
18.01.2019Läpimurtoja orgaaniselle elektroniikalle
17.01.2019Virtausanturi verelle
17.01.2019Suunniteltuja materiaaleja fotonien hyödyntämiseksi
15.01.2019Perovskiitista spintroniikan perusta?
14.01.2019Spinkuvioita korkean lämpötilan suprajohteissa
11.01.2019Kvanttimateriaaleja puolijohteiden tilalle
10.01.2019Eksitonit avaavat tietä tehokkaampaan elektroniikkaan
09.01.2019Ympäristö muuttaa molekyylin kytkimeksi
08.01.2019Itseoppimiseen tukeutuva konenäkö
07.01.2019Parempia Li-Ion -akkuja

Siirry arkistoon »