Itseoppimiseen tukeutuva konenäkö08.01.2019
Järjestelmä on edistys konenäön sektorilla. Se on myös tärkeä askel kohti yleisiä keinotekoisia älykkäitä järjestelmiä - tietokoneita, jotka oppivat itse, ovat intuitiivisia, tekevät päätöksiä perustelujen perusteella ja ovat vuorovaikutuksessa ihmisten kanssa inhimillisemmällä tavalla. Vaikka nykyiset konenäön järjestelmät ovat yhä tehokkaampia ne ovat tehtäväkohtaisesti rajattuja. Ne eivät ole suunniteltu omatoimiseen oppimiseen. Ne on koulutettava tarkalleen, mitä oppia, yleensä tarkastelemalla tuhansia kuvia, joissa tunnistettava kohde on niille merkitty. Ne eivät myöskään osaa luoda kuvaa kohteesta, jos vain osa kohteesta näkyvissä. Tietokoneet eivät myöskään osaa selittää perusteluja valokuvan esineen määrittämiseksi: Tekoälypohjaiset järjestelmät eivät rakenna sisäistä kuvaa tai opittujen esineiden mallia, siten miten ihmiset tekevät. Uusi lähestymistapa koostuu kolmesta laajasta vaiheesta. Ensin järjestelmä hajottaa kuvan pieniksi paloiksi, joita tutkijat kutsuvat "wiev lets, vilkaisuiksi". Toiseksi tietokone oppii, miten nämä vilkaisunäkymät sopivat yhteen muodostamaan kyseessä oleva kohde. Ja lopuksi se tarkastelee, mitä muita kohteita ympäröivällä alueella on ja onko kyseisten esineiden informaatio olennaista ensisijaisen kohteen kuvaamiseen ja tunnistamiseen. Auttaakseen uutta järjestelmää ”oppimaan” aivan kuten ihmiset, insinöörit päättivät upottaa sen Internet-replikaan eli ympäristön jossa ihmiset ”elävät”. Internetissä on runsaasti kuvia ja videoita, jotka kuvaavat samantyyppisiä esineitä. Lisäksi nämä esineet näkyvät monista näkökulmista - peitettynä, lintuperspektiivissä ja ne on sijoitettu erilaisiin ympäristöihin. Kehystyöhön tutkijat saivat myös oivalluksia kognitiivisesta psykologiasta ja neurotieteestä. ”Lapsista alkaen, opimme, mitä jokin on, koska näemme monia esimerkkejä niistä monissa yhteyksissä”, toteaa professori Vwani Roychowdhury UCLA:n tiedotteessa. ”Tämä kontekstuaalinen oppiminen on aivojemme keskeinen piirre, ja se auttaa meitä rakentamaan vahvoja malleja objekteista, jotka ovat osa toiminnallisesti integroitua maailmankuvaa.” Tutkijat testasivat järjestelmää noin 9 000 kuvalla, joista kukin esitti ihmisiä ja muita kohteita. Alusta pystyi rakentamaan yksityiskohtaisen mallin ihmiskehosta ilman ulkoista ohjausta ja ilman kuvien merkitsemistä. Insinöörit tekivät testejä myös moottoripyörien, autojen ja lentokoneiden kuvilla. Kaikissa tapauksissa heidän järjestelmä suoriutui paremmin tai ainakin vastaavasti kuin perinteiset konenäköjärjestelmät, jotka on kehitetty monien vuosien koulutuksella. Aiheesta aiemmin: Nopeampia neuroverkkoja syväoppimiseen |
Nanotekniikka on tulevaisuuden lupaus. Näillä sivuilla seurataan elektroniikkaa sekä tieto- ja sähkötekniikkaa sivuavia nanoteknisiä tiedeuutisia.