Kävisikö pii sittenkin akkuanodiksi

13.03.2019

Drexel-mxene-si-anode-network-crop-300.jpgDrexelin ja Trinity Collegen tutkijat ovat luoneet keinon yhdistää MXene-levyjä ja piitä sisältävästä lietteestä muodostamaan vakaan anodin, joka laajentaa litiumioniakkujen kapasiteettia.

Piin käyttö Li-Ion-akkujen anodissa on ollut tutkijoiden haasteena pitkään, johtuen piin muutoksista lataus- ja purkuvaiheissa.

Yhdysvaltalaisen Drexelin yliopiston ja Trinity Collegen tutkimukset Irlannissa viittaavat siihen, että piin käyttö litium-ioni akkujen anodissa olisi mahdollista materiaalin nimeltä MXene avulla.

Tutkimuksen mukaan ratkaisu voisi pidentää Li-ion-akkujen käyttöikää jopa viisinkertaisesti. Se on mahdollista, koska kaksiulotteinen MXene-materiaali kykenee estämään piianodin laajenemisen rikkoutumispisteeseen latauksen aikana - ongelma, joka on estänyt sen käytön jo jonkin aikaa.

Drexel- ja Trinity-ryhmän menetelmä muodostaa anodin, jossa MXenen nanoarkit muodostavat verkon samalla, kun ne kääriytyvät piipartikkeleiden ympärille ja toimivat siten johtavana lisä- ja sideaineena samanaikaisesti.

MXene materiaalin kaksiulotteisuus tuottaa myös ioneilla enemmän tilaa ja niiden liikkua nopeammin sisään ja ulos. Niillä on myös erinomainen mekaaninen lujuus, joten pii-MXene-anodit ovat myös melko kestäviä jopa 450 mikronin paksuuteen asti.

Tutkijoiden anodinäytteet osoittivat suurempia litium-ionikapasiteettia kuin nykyiset grafiitti- tai pii-hiili-anodit, joita käytettiin Li-ion-akuissa ja johtavuutta, joka oli noin 100 - 1000 kertaa korkeampi kuin tavanomaisilla pii-anodeilla, kun MXene lisätään.

Tutkijoiden mukaan MXene-anodien valmistus lieteprosessin avulla on helposti skaalattavissa minkä tahansa kokoisten anodien massatuotantoon.

Drexel-UNIST-pii-anodi-300.jpgMyös kansainvälinen korealaisessa UNIST-yliopistossa toiminut tutkijaryhmä on kehitellyt piipohjaista anodimateriaalia mutta järjestänyt sen korallimaiseen muotoon.

Professori Soojin Park ja hänen tutkimusryhmänsä havaitsivat, että uusi materiaali pystyy toimimaan hyvin jopa ultra-nopeissa latauskokeissa sekä erilaisissa testianodeissa.

Tutkijoiden elektrodisuunnitelma luo kolmiulotteisen verkon, jossa huokoiset piin nanoputket parantavat elektronin kuljetusta koko elektrodissa. Lisäksi rakenteen erilaiset makrohuokoset tuottavat kanavia nopealle ioniliikenteelle. Edelleen yhtenäinen ja ohut hiilikerrospäällystys pienentää rakenteen resistanssia ja tarjoa esteen SEI:n ei-toivotun sakeutumisen pysäyttämiseksi ja pii-nanorakenteiden tilavuusmuutoksen mukauttamiseksi”, selvittää suunnittelua ensimmäinen kirjoittaja Dr. Bin Wang.

Aiheesta aiemmin:

Elektrodeina pii ja rikki

Turvallisempia ja edullisempia akkuja

Piitä sittenkin Li-ion-akkuun

21.03.2019RF-fotoneja ja kvanttihyppyjä
20.03.2019Säädettävää ja äänennopeaa lämmönjohdetta
19.03.2019Molekyylielektroniikan toimintoja kvantti-interferenssillä
18.03.2019Nesteitä ja molekyylejä sähkön tuottajiksi
15.03.2019Moiré-kuviot tuottavat superhiloja
14.03.2019Kvanttivaloa ja kvanttipisteitä
13.03.2019Kävisikö pii sittenkin akkuanodiksi
12.03.2019DNA-tietotekniikka tehostuu
11.03.2019Kvanttianturi tehostaa syövän hoitoa
08.03.2019Miten olisi magnonielektroniikka?

Siirry arkistoon »