Kaksi vapausastetta

18.09.2019

LiU-kuinka-kvanttitiekkari-toimii-simulointi-300-t.jpgLinköpingin yliopiston tutkijoiden perustaman startup-yhtiön kehittämillä opetus- ja tutkimusvälineillä voidaan simuloida ja ymmärtää kuinka esimerkiksi kvanttisalaus ja kvanttiteleportaatio toimivat.

Linköpingin yliopiston tutkijat ovat osoittaneet kuinka kvanttitietokone todella toimii ja ovat onnistuneet simuloimaan kvanttitietokoneen ominaisuuksia klassisessa tietokoneessa.

Linköpingin yliopiston professori Jan-Åke Larsson ja jatko-opiskelija Niklas Johansson ovat selvittäneet, mitä kvanttitietokoneessa tapahtuu ja miksi se on tehokkaampi kuin klassinen tietokone.

”Olemme osoittaneet, että suurin ero on siinä, että kvanttitietokoneilla on kaksi vapausastetta jokaiselle bitille. Simuloimalla ylimääräistä vapausastetta klassisessa tietokoneessa voimme käyttää joitain algoritmeja samalla nopeudella kuin ne saavuttaisivat kvanttitietokoneessa”, Jan-Åke Larsson toteaa.

He ovat rakentaneet simulointityökalun, Quantum Simulation Logic, QSL, jonka avulla he voivat simuloida kvanttitietokoneen toimintaa klassisessa tietokoneessa. Simulaatiotyökalu sisältää yhden ja vain yhden ominaisuuden, joka kvanttitietokoneella on, jota klassisella tietokoneella ei ole: yksi ylimääräinen vapausaste jokaiselle bitille, joka on osa laskentaa.

”Jokaisella bitillä on siis kaksi vapausastetta: sitä voidaan verrata mekaaniseen järjestelmään, jossa jokaisella osalla on kaksi vapausastetta - sijainti ja nopeus. Tässä tapauksessa käsittelemme laskentabittejä - jotka välittävät tietoa funktion tuloksesta ja vaihebittejä, jotka välittävät informaatiota funktion rakenteesta”, Jan-Åke Larsson selvittää.

He ovat käyttäneet simulointityökalua tutkimaan joitain kvanttialgoritmeja, jotka hallitsevat funktion rakennetta. Useat algoritmeista toimivat simulaatiossa yhtä nopeasti kuin tekisivät kvanttitietokoneessa.

”Tulos osoittaa, että suurempi nopeus kvanttitietokoneissa johtuu niiden kyvystä tallentaa, käsitellä ja hakea informaatiota yhdellä ylimääräisellä informaatiota kuljettavalla vapausasteella. Tämä antaa meille mahdollisuuden ymmärtää paremmin, kuinka kvanttitietokoneet toimivat. Tämän tietämyksen pitäisi myös helpottaa kvanttitietokoneiden rakentamista, koska tiedämme, mikä ominaisuus on tärkein jotta kvanttitietokone toimisi odotetusti”, toteaa Jan-Åke Larsson.

Jan-Åke Larsson ja hänen työtoverinsa ovat myös täydentäneet teoreettisia simulaatioitaan elektronisista komponenteista rakennetulla fyysisellä laitteistolla. Portit ovat samanlaisia kuin kvanttitietokoneissa ja työkalusetti simuloi kvanttitietokoneen toimintaa.

Tutkijoiden perustaman Phase Space Computing –startup yhtiön välineillä esimerkiksi opiskelijat voivat simuloida ja ymmärtää kuinka kvanttisalaus ja kvanttiteleportaatio toimivat ja samoin kuin jotkin yleiset kvanttilaskenta-algoritmit, kuten Shorin algoritmi tekijänmuodostukselle.

Aiheista aiemmin:

Ensimmäinen monimutkainen kvanttiteleportaatio

Tehokkaampaa salaustekniikkaa

Edistysaskeleita kvanttitietotekniikalle

17.10.2019Spin- ja varausvirran hallintaa
16.10.2019Spektrometriaa sirupiirillä
15.10.2019Uusia ulottuvuuksia printtielektroniikalle
14.10.2019Löytö energiatehokkaalle elektroniikalle
11.10.2019Pikotiedettä ja uusia materiaaleja
10.10.2019Lomittumista 50 kilometrissä valokuitua
09.10.2019Koneoppiminen etsii uusia materiaaleja
08.10.2019Parhaat kahdesta maailmasta: Magnetismi ja Weyl -puolimetallit
07.10.2019Tehokkaampaa energian keruuta IoT-antureille
04.10.2019Uusia kierrätyskelpoisia akkukonsepteja

Siirry arkistoon »