Jäähdytystekniikkaa 3D-elektroniikalle vaikka avaruuteen

08.11.2019

NASA-mikrorako-jaahdytystekniikka-300-t.jpgNASAn ja Marylandin yliopiston kehittämää mikrokanavien elektroniikan jäähdytysteknologia on testattu kahdesti avaruusolosuhteissa.

Painottomuus ei vaikuta uraauurtavaan tekniikkaan, jonka avulla NASA voi jäähdyttää tehokkaasti tiiviisti pakatun avaruuden instrumenttielektroniikan. Sitä voidaan käyttää tulevassa avaruuslentojen operaatioissa.

Kahden äskettäisen avaruuslennon aikana NASA:n Franklin Robinson ja Marylandin yliopiston professori Avram Bar-Cohen, osoittivat, että heidän mikrorakoinen jäähdytystekniikka ei vain poistanut suuria määriä lämpöä, vaan teki sen myös tämän sekä matalan että korkean painottomuuden ympäristöissä lähes identtisillä tuloksilla.

"Painovoimavaikutukset ovat suuri riski tällaisessa jäähdytystekniikassa", Robinson sanoi. ”Lennot todistivat, että tekniikkamme toimii kaikissa olosuhteissa. Nämä kokeilut avaavat oven tekniikan käyttöön tulevaisuuden avaruuslentojen operaatiossa. Mielestämme tämä järjestelmä edustaa uutta lämmönhallinnan paradigmaa.”

Mikrorakojäähdytyksellä tiukasti pakatun elektroniikan tuottama lämpö poistetaan juoksuttamalla sähköä johtamatonta HFE 7100 jäähdytysnestettä upotettujen suorakaiteen muotoisten mikrokanavien kautta lämpöä tuottavien laitteiden sisällä tai niiden välillä.

Kun jäähdytysneste virtaa näiden pienten rakojen läpi, se kiehuu kuumennetuilla pinnoilla tuottaen höyryä. Tämä kaksivaiheinen prosessi tarjoaa suuremman lämmönsiirtonopeuden, mikä pitää suuritehoiset laitteet viileinä ja todennäköisemmin rikkoontumatta ylikuumenemisen takia.

Sulautettu jäähdytystapa edustaa merkittävää poikkeamista perinteisemmistä jäähdytystekniikoista. Tavanomaisemmissa lähestymistavoissa suunnittelijat pitävät lämpöä tuottavat piirit ja muut laitteistot mahdollisimman erillään toisistaan. Lämpö kulkee painettuun piirilevyyn, missä se johdetaan lopulta avaruusalukseen asennettavaan jäähdyttimeen.

Robinson ja Bar-Cohen aloittivat mikrokanavatekniikan kehittämisen noin neljä vuotta sitten varmistaakseen, että NASA voisi hyödyntää seuraavan sukupolven 3D-piirejä kun niitä tulee saataville.

Hyödyistä huolimatta kolmiulotteiset piirit ovat erityinen haaste potentiaalisille käyttäjille sekä maan päällä että avaruudessa: mitä pienempi tila piirien välillä on, sitä vaikeampaa siellä on poistaa lämpöä. Koska kaikki sirut eivät ole kosketuksissa piirilevyn kanssa, perinteiset jäähdytystekniikat eivät toimi. Uusi tekniikka välttää tämän ongelman johtamalla jäähdytysnestettä pinottujen piirien sisällä ja välillä.

Vaikka mikrorakojäähdytys oli alun perin suunniteltu käytettäväksi 3D-piireissä, siitä olisi apua muussakin avaruuslennon elektroniikassa. "Näemme sovelluksia mikrorakojäähdytykseen kaikissa avaruudessa käytetyissä erittäin tiheissä elektronisissa laitteissa", Robinson toteaa.

Aiheesta aiemmin:

Nestejäähdytys siirtyy piille

Tehokkaampaa jäähdytystä

13.11.2019Uudenlaisia fotonisia nestekiteitä
12.11.2019Onnistumisia orgaanisissa
11.11.2019Kohti älykkäitä mikrorobotteja
09.11.2019Suomen suurin valtti kybersodassa on luottamus
08.11.2019Jäähdytystekniikkaa 3D-elektroniikalle vaikka avaruuteen
07.11.2019Uusia tiloja grafeenin taikakulmassa
06.11.2019Kohti antiferromagneettisia muisteja
05.11.2019Muuntaa 2D-tasot pehmeiksi ja joustaviksi 3D-rakenteiksi
04.11.2019Tarkempia kiderakenteita ja proteiineja aurinkokennoihin
01.11.2019Kvanttiakussa ei synny häviöitä

Siirry arkistoon »