Tehokkaampi lämpösähköinen materiaali

03.12.2020

FLEET-guangsai-yang-300-t.jpgUusi Wollongongin yliopiston tutkimus ylittää yhden lämpösähköisten materiaalien haasteen, uudella materiaalilla, joka voi muuntaa lämmön sähköksi ja päinvastoin nykyisiä 60 prosenttia paremmalla muuntotehokkuudella.

Lämpösähköisten materiaalien jatkuva haaste on sähköisten ja lämpöominaisuuksien tasapaino: Useimmissa tapauksissa materiaalin sähköisten ominaisuuksien parantuminen (korkeampi sähkönjohtavuus) tarkoittaa lämpöominaisuuksien heikkenemistä (suurempi lämmönjohtavuus) ja päinvastoin.

"Tärkeintä on erottaa toisistaan lämmön ja sähkön kulku", sanoo tohtorikoulutettava Guangsai Yang.

Tutkimustyössään ryhmä lisäsi pienen määrän amorfisia nanoboorihiukkasia vismuttitelluridipohjaisiin lämpösähköisiin materiaaleihin saaden aikaan nanorakenteisia vikoja.

Koska elektronit kuljettavat sekä lämpöä että johtavat sähköä, pelkästään elektronikuljetuksiin perustuva materiaalitekniikka on altis ikuiselle kompromissille lämpö- ja sähköominaisuuksien välillä.

Toisaalta fononit kuljettavat vain lämpöä. Siksi fononien blokkaaminen tällä tavalla vähentää hilavärähtelyjen aiheuttamaa lämmönjohtavuutta vaikuttamatta kuitenkaan elektronisiin ominaisuuksiin.

"Avain lämpösähköisen hyötysuhteen parantamiseen on minimoida lämmön virtaus fononien blokkauksen kautta ja maksimoida elektronien virtaa", Guangsai Yang sanoo. "Tästä seuraa ennätyksellisen korkea lämpösähkötehokkuus materiaaleissamme."

Tuloksena on ennätyksellisen konversiotehokkuus, 11,3 %, mikä on 60 % parempi kuin kaupallisesti saatavissa olevissa materiaaleissa, jotka on valmistettu vyöhykesulatusmenetelmällä. Uuden materiaaliyhdisteen ZT-arvo on 1,6 lämpötilassa 375 K (102 ºC).

Sen lisäksi, että vismuttitelluridipohjaiset materiaalit ovat menestyneimmin kaupallisesti saatavia lämpösähköisiä materiaaleja, ne ovat myös tyypillisiä topologisia eristimiä.

Aiheesta aiemmin:

Rautapohjainen lämpösähkögeneraattori

Hukkalämpö sähköksi uusin keinoin

Nanolangoilla lämpö sähköksi tehokkaammin

11.06.2021RAM:ina ja ROM:ina toimivia sirukomponentteja
10.06.2021Kuinka revontulet syntyvät?
09.06.2021Radiotaajuisen signaalin prosessointi akustiseksi
08.06.2021Magnetosähköä ja magnetostriktiota
07.06.2021Itsetietoisia ja omavoimaisia materiaaleja
04.06.2021Insinöörit osoittavat kvanttiedun
03.06.2021Fononinen katalyysi?
02.06.2021Läpimurto magneettisissa 3D-nanorakenteissa
01.06.2021Uusi kulma sähkön tuottamiseksi lämmöstä
31.05.2021Energiatehokkain analogia-digitaalisiru

Siirry arkistoon »