Kvanttilaskentaa viritellen15.02.2021
Usean instituution tutkijoiden tiimi on osoittanut, että kvanttilaskenta mahdollistaa simulaatiot eräistä magneettisten materiaalien mysteereistä. Tutkimus tuotti tarkkoja tuloksia kvanttitietokoneella tehdyistä materiaalitieteellisistä simulaatioista, jotka voitiin myös todentaa neutronin sirontakokeilla ja muilla käytännön tekniikoilla. Tämä tehtiin hyödyntämällä kvanttihehkutuksella upottamalla olemassa oleva malli D-Wave Systemsin kvanttitietokoneeseen. Materiaalien luonnehtiminen on jo pitkään ollut klassisten supertietokoneiden leipätyötä. "Myös kvanttitietokoneiden materiaalitieteen ongelmien ratkaisemisen taustalla oleva menetelmä on jo kehitetty, mutta se on ollut täysin teoreettista", kertoo ORNL:n opiskelijatutkija Paul Kairys. Nyt käytetty lähestymistapa osoitti, että kvanttiresurssit pystyvät selvittämään tutkittujen materiaalien magneettista rakennetta ja ominaisuuksia, mikä voisi johtaa parempaan käsitykseen erilaisista aineen uusista faaseista, jotka ovat hyödyllisiä datan tallentamiseen ja spintroniikan sovelluksiin. Tutkijoiden mukaan simulaatioiden tulokset vastasivat teoreettisia ennusteita ja muistuttivat vahvasti kokeellista dataa. Kvanttilaitteiston rajoitukset ovat tehneet aiemmin tällaisten tutkimusten tekemisen vaikeaksi tai mahdottomaksi suorittaa. Tässäkin tutkimuksessa kvanttitietokonetta piti hieman puijata käsittämään materiaalin olemus. Kvanttiresursseilla on aiemmin simuloitu pieniä molekyylejä kemian tai materiaalijärjestelmien tutkimisessa. Tuhansia atomeja sisältävien magneettisten materiaalien tutkiminen on kuitenkin mahdollista D-Wave-kvanttikoneen koon ja monipuolisuuden vuoksi, hehkuttaa kyseinen laitevalmistajan edustaja. Äskettäin ArXiv.org-sivustossa julkaistussa tutkimuksessa esiteltiin QFold. Kyseessä on kvanttialgoritmi, jossa hyödynnetään kvanttikävelyä ja syväoppimista proteiinien laskotumisen ratkaisemiseksi. Se on yksi tärkeimmistä ja vaikeimmista tehtävistä laskennallisessa biokemiassa. Ehdotettu malli kuvaa proteiineja todellisten vääntökulmien mukaan sen sijaan, että käytettäisiin likimääräisiä jäykkiä hilamalleja. Konseptin todistus toteutettiin todellisella kvanttilaitteistolla eli IBMQ Casablanca kvanttiprosessorissa. QFold, on täysin skaalautuva hybridikvanttialgoritmi, joka toisin kuin aikaisemmat kvanttimallit eivät vaadi hilamallin yksinkertaistamista ja tukeutuu sen sijaan aminohappojen kääntökulmien suhteen paljon realistisempaan oletukseen. Aiheesta aiemmin: Kvanttisimulointia topologisista eristeistä |
Nanotekniikka on tulevaisuuden lupaus. Näillä sivuilla seurataan elektroniikkaa sekä tieto- ja sähkötekniikkaa sivuavia nanoteknisiä tiedeuutisia.