Kvanttilaskentaa viritellen

15.02.2021

ORNL-kvanttisimuloint-magneettimateriaalista-300-t.jpgD-Waven laitteisson avulla tutkijaryhmä simuloi magneettisen näytemateriaalin kokeellista olemusta ja se tuotti tuloksia, jotka ovat suoraan verrattavissa todellisten kokeiden tulokseen.

Usean instituution tutkijoiden tiimi on osoittanut, että kvanttilaskenta mahdollistaa simulaatiot eräistä magneettisten materiaalien mysteereistä.

Tutkimus tuotti tarkkoja tuloksia kvanttitietokoneella tehdyistä materiaalitieteellisistä simulaatioista, jotka voitiin myös todentaa neutronin sirontakokeilla ja muilla käytännön tekniikoilla.

Tämä tehtiin hyödyntämällä kvanttihehkutuksella upottamalla olemassa oleva malli D-Wave Systemsin kvanttitietokoneeseen.

Materiaalien luonnehtiminen on jo pitkään ollut klassisten supertietokoneiden leipätyötä. "Myös kvanttitietokoneiden materiaalitieteen ongelmien ratkaisemisen taustalla oleva menetelmä on jo kehitetty, mutta se on ollut täysin teoreettista", kertoo ORNL:n opiskelijatutkija Paul Kairys.

Nyt käytetty lähestymistapa osoitti, että kvanttiresurssit pystyvät selvittämään tutkittujen materiaalien magneettista rakennetta ja ominaisuuksia, mikä voisi johtaa parempaan käsitykseen erilaisista aineen uusista faaseista, jotka ovat hyödyllisiä datan tallentamiseen ja spintroniikan sovelluksiin. Tutkijoiden mukaan simulaatioiden tulokset vastasivat teoreettisia ennusteita ja muistuttivat vahvasti kokeellista dataa.

Kvanttilaitteiston rajoitukset ovat tehneet aiemmin tällaisten tutkimusten tekemisen vaikeaksi tai mahdottomaksi suorittaa. Tässäkin tutkimuksessa kvanttitietokonetta piti hieman puijata käsittämään materiaalin olemus.

Kvanttiresursseilla on aiemmin simuloitu pieniä molekyylejä kemian tai materiaalijärjestelmien tutkimisessa. Tuhansia atomeja sisältävien magneettisten materiaalien tutkiminen on kuitenkin mahdollista D-Wave-kvanttikoneen koon ja monipuolisuuden vuoksi, hehkuttaa kyseinen laitevalmistajan edustaja.

ORNL-Protein_folding-white-R-250-t.jpgÄskettäin ArXiv.org-sivustossa julkaistussa tutkimuksessa esiteltiin QFold. Kyseessä on kvanttialgoritmi, jossa hyödynnetään kvanttikävelyä ja syväoppimista proteiinien laskotumisen ratkaisemiseksi. Se on yksi tärkeimmistä ja vaikeimmista tehtävistä laskennallisessa biokemiassa.

Ehdotettu malli kuvaa proteiineja todellisten vääntökulmien mukaan sen sijaan, että käytettäisiin likimääräisiä jäykkiä hilamalleja. Konseptin todistus toteutettiin todellisella kvanttilaitteistolla eli IBMQ Casablanca kvanttiprosessorissa.

QFold, on täysin skaalautuva hybridikvanttialgoritmi, joka toisin kuin aikaisemmat kvanttimallit eivät vaadi hilamallin yksinkertaistamista ja tukeutuu sen sijaan aminohappojen kääntökulmien suhteen paljon realistisempaan oletukseen.

Aiheesta aiemmin:

Kvanttisimulointia valolla

Kvanttitietokoneet töihin

Kvanttisimulointia topologisista eristeistä

21.04.2021Fotoninen MEMS-kytkin kaupallistuu
20.04.2021Kaksiulotteista suprajohtavuutta kolmiulotteisessa suprajohteessa
19.04.2021Valoa läpi kannon ja kiven
16.04.2021Grafeeni ja terahertsit
15.04.2021Eksotiikkaa maagisen kulman grafeenissa
14.04.2021Uusi näkemys akkumateriaalin roolista
13.04.2021Alumiinianodi tarjoaa kestävän vaihtoehdon
12.04.2021Maailman nopein spintroninen p-bitti
09.04.2021Kohti atomipohjaista radioviestintää
08.04.2021Antiferromagneettinen läpimurto

Siirry arkistoon »