Magneettien manipulointia atomien tasolla

19.02.2021

Lancaster-manipuloida-magneetteja-atomitasolla-250-t.jpgNopeat ja energiatehokkaat tulevaisuuden tietojenkäsittelytekniikat ovat näköpiirissä sillä kansainvälinen tutkijaryhmä on onnistuneesti manipuloinut magneetteja atomien tasolla.

Fyysikko tohtori Rostislav Mikhaylovskiy Lancasterin yliopistosta kertoo: "Löytömme atomisesti ohjatusta ultranopeasta magnetismin hallinnasta avaa laajat mahdollisuudet nopeaan ja energiatehokkaaseen tulevaisuuden tietojenkäsittelytekniikkaan."

Jatkuvasti kasvava kysyntä tehokkaalle magneettiselle datankäsittelylle vaatii uusia keinoja magneettisen tilan manipuloimiseksi ja vaihdon vuorovaikutuksen manipulointi olisi tehokkain ja viime kädessä nopein tapa hallita magnetismia.

Manipuloinnin saavuttamiseksi tutkijat käyttivät ultralyhyttä laserpulssiviritystä. Eli valolla hallittuja fononeja käytettiin makroskooppisten magneettisten tilojen manipulointiin. Vahvat keski-infrapunan sähkökentän pulssit, jotka on viritetty antiferromagneetin DyFeO3:n resonanssille, aiheuttavat ultranopeat ja pitkäikäiset muutokset materiaalissa.

Tällainen magneettikeskuksen ei-terminen hilahallinta antaa mahdollisuuden toteuttaa pikosekunnin koherentti vaihto kilpailevien antiferromagneettisten ja heikosti ferromagneettisten spinjärjestysten välillä.

Tohtori Rostislav Mikhaylovskiy Lancasterin yliopistosta selittää: "On pitkään ajateltu, että atomivärähtelyjen magnetismin hallinta rajoittuu akustisiin herätteisiin (ääniaallot) mikä ei voi olla nopeampi kuin nanosekunnit. Olemme lyhentäneet magneettista kytkentäaikaa tuhatkertaisesti, mikä on merkittävä virstanpylväs sinänsä."

Lancaster-NUS-manipuloida-magneetteja-250-t.jpgSingaporen kansallisen yliopiston (NUS) tutkijoiden johdolla on puolestaan kehitetty rautaoksidiin eli ruosteeseen perustuen materiaalitekniikkaa, jossa voi luoda "pyörteisiä" nanorakenteita antiferromagneeteissa.

Sellaiset voisivat toimia uudentyyppisinä informaatiobitteinä, jotka paitsi tallentavat muistibittejä mutta osallistuisivat myös laskennallisiin operaatioihin.

Käyttäen erittäin lyhyitä laserpulsseja he loivat kuuman atomihiukkasten höyryn, joka muodosti materiaalin pinnalle ohuen rautaoksidikalvon. Idean työhönsä tutkijat kosmologian fysiikasta eli alkuräjähdyksestä, joka on saattanut johtaa kosmisten pyörteiden muodostumiseen.

Aiheesta aiemmin:

Ensimmäinen antiferromagneettinen topologinen kvanttimateriaali

Kohti antiferromagneettisia muisteja

21.04.2021Fotoninen MEMS-kytkin kaupallistuu
20.04.2021Kaksiulotteista suprajohtavuutta kolmiulotteisessa suprajohteessa
19.04.2021Valoa läpi kannon ja kiven
16.04.2021Grafeeni ja terahertsit
15.04.2021Eksotiikkaa maagisen kulman grafeenissa
14.04.2021Uusi näkemys akkumateriaalin roolista
13.04.2021Alumiinianodi tarjoaa kestävän vaihtoehdon
12.04.2021Maailman nopein spintroninen p-bitti
09.04.2021Kohti atomipohjaista radioviestintää
08.04.2021Antiferromagneettinen läpimurto

Siirry arkistoon »