Tietojenkäsittelyn tehonkulutuksen alarajalle

15.03.2021

Michigan-munakartonki-kvanttipisteryhma-300-t.jpgMichiganin yliopiston johtama kansainvälinen tutkijaryhmä on löytänyt uuden polun kohti informaation siirtoa ja vastaanottamista yksittäisillä valon fotoneilla.

Heidän kokeensa osoitti mahdollisuuden käyttää epälineaarisuutta erittäin heikkojen valosignaalien muokkaamiseen ja havaitsemiseen hyödyntämällä kvanttijärjestelmän selkeitä muutoksia seuraavan sukupolven laskennan edistämiseksi.

"Tutkijat ovat miettineet, voidaanko havaittavia epälineaarisia vaikutuksia ylläpitää erittäin pienillä tehotasoilla - aina yksittäisiin fotoneihin saakka. Tämä toisi meidät tietojenkäsittelyn tehonkulutuksen alarajalle", kertoi professori Hui Deng.

"Osoitimme uudentyyppisen hybriditilan tuomaan meidät tällaiseen järjestelmään, yhdistämällä valon ja aineen kvanttipisteiden joukon kautta", hän lisäsi.

Fyysikot ja insinöörit loivat 2D-puolijohteista kvanttipisteitä, jotka oli järjestetty munakotelon tapaan. Tässä tapauksessa rakenne rajoittaa eksitoneja, jotka koostuvat elektronista ja aukosta.

Tavanomaisissa laitteissa eksitonit vaeltelevat vapaasti ja tuskin kohtaavat toisiaan. Nämä materiaalit voivat sisältää useita identtisiä eksitoneja samanaikaisesti ilman, että tutkijat huomaavat muutoksia materiaalin ominaisuuksissa.

Tyypilliset kvanttipisteet ovat vain muutama atomin mittaisia - ne eivät siten ole käyttökelpoisissa mitoissa. Ratkaisuna Dengin tiimi loi joukon kvanttipisteitä, jotka edistävät epälineaarisuutta kaikki yhdessä. Tiimi loi munakartonkimaisen energiamaailman kahdella 2D-puolijohdehiutaleella. Niiden toisiinsa kietoutunut elektronirakenne loi suuremman elektronisen hilan, jonka taskujen poikkimitta oli noin kymmenen atomia.

Jotta 2D-puolijohteen sisällä olevia kvanttipisteitä voitaisiin ohjata valolla ryhmänä, joukkue rakensi resonaattorin asettamalla yhden peilin pohjaksi, puolijohteen sen päälle ja sitten toisen peilin puolijohteen päälle.

Kun kvanttimunapakkaus on upotettu peilattuun "onteloon", se mahdollisti punaisen laservalon resonoida, mikä mahdollisti toisen kvanttitilan eli polaritonin muodostumisen. Polaritonit ovat eksitonien ja ontelon valon hybridi. Tämä vahvisti sen, että kaikki kvanttipisteet ovat vuorovaikutuksessa valon kanssa yhdessä.

Tässä järjestelmässä Dengin tiimi osoitti, että muutaman eksitonin asettaminen koteloon johti mitattavissa olevaan polaritonien energian muutokseen - osoittaen epälineaarisuutta ja että kvanttisalpaus toteutui.

"Insinöörit voivat käyttää tätä epälineaarisuutta havaitsemaan järjestelmään tallentuneen energian, mahdollisesti alas yksittäisen fotonin tasolle asti, mikä tekee järjestelmästä lupaavan erittäin matalaenergisenä kytkimenä", Deng sanoi.

"Polaritonien hallinta kohdistuu tulevaisuuden integroituun fotoniikkaan, jota käytetään erittäin matalan energiankäytön laskentaan ja informaationkäsittelyyn ja jota voitaisiin käyttää näköjärjestelmien neuromorfiseen prosessointiin, luonnollisen kielen käsittelyyn tai itsenäisiin robotteihin."

Epälineaarisuuden tuottava kvanttisalpaus tarkoittaa myös, että samanlaista järjestelmää voitaisiin mahdollisesti käyttää kubiteille. Näillä tavoilla käytettyinä 2D-puolijohteilla on mahdollisuus nostaa kvanttilaitteet huoneenlämpötilaan.

Aiheesta aiemmin:

Kierteisiä topologisia eksitoni-polaritoneja

Kuvia eksitoni-polaritoneista

01.02.2023Pystysuuntainen sähkökemiallinen transistori
31.01.2023Matematiikkaa valon nopeudella
30.01.2023Monikäyttöinen kaksiulotteinen
28.01.2023Aaltoputkia ilmaan ja salamalle
27.01.2023Edistystä suprajohteisissa kubiteissa
26.01.2023Pienempiä ja halvempia virtausakkuja
25.01.2023Kaksiulotteisia kiekkoalustoille
24.01.2023Virstanpylväs valotoimiselle elektroniikalle
23.01.2023Topologiaa optiseen kuituun
23.01.2023Riittävätkö alkuaineet

Siirry arkistoon »