Topologiaa ja magneettisuutta

15.09.2021

FLEET-Monash-topologian-ja-magnetismin-sekoitus-250-t.jpgUusi Monash yliopiston tutkijoiden katsaus nostaa esiin viimeaikaisen tutkimuksen topologisten eristeiden ja magneettisten materiaalien heterorakenteista. Niissä magnetismin ja topologian mielenkiintoinen vuorovaikutus voi synnyttää uusia ilmiöitä, kuten kvanttipoikkeavia Hall -eristeitä, aksioneristeitä ja skyrmioneja. Kaikki nämä ovat lupaavia rakenneosia tulevaa pienen tehonkäytön elektroniikkaa varten.

Jos sopivia kandidaattimateriaaleja löytyy, on mahdollista toteuttaa nämä eksoottiset tilat huoneenlämpötilassa ja ilman magneettikenttää, mikä auttaa tutkimusorganisaatio FLEETiä etsimään tulevaa matalaenergistä, CMOS:in jälkeistä elektroniikkaa.

"Tavoitteenamme oli tutkia lupaavia uusia menetelmiä kvantti Hall -vaikutuksen saavuttamiseksi", sanoo uuden tutkimuksen pääkirjoittaja, tohtori Semonti Bhattacharyya Monashin yliopistosta.

Kvantti Hall -efekti (QHE) on topologinen ilmiö, joka mahdollistaa nopeiden elektronien kulun materiaalin reunalla, mikä on mahdollisesti hyödyllistä tuleville matalaenergiselle elektroniikalle ja spintroniikalle. Tämä ei kuitenkaan onnistu ilman suuria magneettikenttiä. Kuitenkin topologisen fysiikan ja magnetismin "cocktail" voi mahdollistaa samanlaisen vaikutuksen saavuttamisen, kvanttipoikkeavan Hall -efektin, jossa samanlaisia reunatiloja esiintyy ilman ulkoista magneettikenttää.

Magneettisuuden indusoimiseksi topologisissa eristeissä on noudatettu useita strategioita mutta katsauksessaan tutkijat keskittyivät tapaan, jossa indusoimalla magneettisuutta läheisyysvaikutuksen kautta topologisissa eriste-magneettieriste heterorakenteissa. Eli rakenne sisältää ohutkalvokerroksia topologisia eristeitä ja magneettisia materiaaleja vierekkäin, jolloin topologinen eriste voi lainata magneettisia ominaisuuksia naapuriltaan.

Tämän lähestymistavan avulla tutkijat voivat virittää jokaista materiaalityyppiä. Magneettisten materiaalien ei tarvitse olla ferromagneetteja myös ferrimagneetteja tai antiferromagneetteja voidaan käyttää.

Kiinalais-sveitsiläinen tutkijaryhmä on puolestaan saavuttavat sähköpulssien ohjaaman magneettisen topologian.

Äskettäin tutkijat, joita johti professori DU Haifeng Kiinan tiedeakatemian korkean magneettikentän laboratoriosta (HMFL) sekä kollegat Paul Scherrer –instituutista ovat saavuttaneet virran ohjaamia topologisia magneettisia muunnoksia huoneenlämmössä pulssivirtaa säätelemällä.

Fe3Sn2:ssa on kahdenlaisia olemuksia: topologiset ei-triviaaliset skyrmionit ja topologiset triviaaliset magneettikuplat tai raidat.

Aiemmassa tutkimuksessa Haifeng kollegoineen toteuttivat magneettimuistien Fe3Sn2:ssa ja saavuttivat topologisen muutoksen skyrmionien ja kuplien välillä magneettikentän avulla. Menetelmä ei kuitenkaan sovi spintroniikkarakenteisiin kanssa, joten nyt he kehittivät sähköisen tavan topologisen magneettisen muunnoksen tekemiseksi.

Skyrmionit ja kuplat voivat muuttua toisikseen nanosekuntisella pulssivirralla. Suurella virrantiheydellä skyrmionit muuttuvat magneettikupliksi ja pienellä virrantiheydellä magneettikuplat muuttuvat skyrmioniksi.

Tällaisten topologisten magneettisten siirtymien odotetaan edistävän luotettavien, vähän energiaa kuluttavien ja tehokkaiden topologisten spintronisten rakenteiden kehittämistä.

Aiheista aiemmin:

Päihittää Boltzmanin tyrannian

Ferrosähköistä ja topologista muistia

Parhaat kahdesta maailmasta: Magnetismi ja Weyl -puolimetallit

24.04.2024Akku ja superkonkka yhteen soppii
23.04.2024Kaareva datalinkki esteitä ohittamaan
22.04.2024Kvanttimateriaali lupaa uutta puhtia aurinkokennoille
21.04.2024Läpimurto lupaa turvallista kvanttilaskentaa kotona
20.04.2024Yksi atomikerros kultaa ja molekyylikorjaaja
19.04.2024Uusia ja yllättäviä topologiota
18.04.2024Kvanttivalo syntyy renkaassa ja lähtee kiertueelle
17.04.2024Fononit ja magnonit kaveraavat
16.04.2024E-nenälle ihmisen tasoinen hajuaisti
15.04.2024Valo valtaa alaa magnetismissa

Siirry arkistoon »