Akkuelektrodeita kehittäen

06.12.2022

Texas-magneetti-Soul-amorfinen-akkutekniikoita-250.jpgTexas Austinin yliopiston tutkijat ovat paneutuneet sähköajoneuvojen kahteen merkittävään haasteeseen: rajalliseen ajomatkaan ja lataukseen hitauteen.

Kaksiulotteiset materiaalit lupaavat akuille suurta varastointikapasiteettia mutta heikentynyttä sähkökemiallista suorituskykyä, joka johtuu hitaasta kuljetuskinetiikasta

Nyt tutkijat loivat jopa aiempaa paksumpia elektrodeja käyttämällä valmistuksessa magneetteja ja kuivatusta luodakseen materiaaliin kohdistuksen ja tiheyden, joka ohittaa näiden kriittisten komponenttien mitoittamiseen liittyvät yleiset ongelmat.

Tuloksena on elektrodi, joka voisi mahdollistaa kaksinkertaisen ajomatkan ja nopeamman latauksen sähköajoneuvossa verrattuna akkuun, jossa käytetään olemassa olevaa elektroditekniikkaa.

Vaikka elektrodirakenne kootaan paksummiksi niin valmistusvaiheen magneettikenttä saa kaksiulotteiset materiaalit kohdistumaan pystysuoraan, mikä loi nopean kaistan ioneille kulkea elektrodin läpi. Tyypillisesti paksummat elektrodit pakottavat ionit kiemurtelemaan pidempiä matkoja liikkuakseen akun läpi, mikä johtaa pidempään latausaikaan.

Kehitetty tiheä ja paksu elektrodi pystyy tuottamaan suuren >1600 mAh cm−3 tilavuuskapasiteetin, jonka pintakapasiteetti on jopa 32 mAh cm-2 , mikä on kirjallisuudessa raportoitujen parhaiden joukossa.

Tutkijat korostivat, että he ovat vasta työnsä alussa tällä alalla, sillä he tarkastelivat tässä tutkimuksessa vain yhtä akkuelektrodityyppiä.

Soulin kansallisen yliopiston tutkijaryhmä on tunnistanut a-LiFeSO4F:n, amorfisen rautafluorisulfaattielektrodin, jota voitaisiin käyttää edullisempien, korkean kapasiteetin akkujen kehittämiseen.

Kehitetty elektrodi toimisi erityisesti katodina. Sen materiaali koostuu nanokokoisesta litiumista ja siirtymämetalliyhdisteestä.

Uuden katodiratkaisun merkittävä etu on, että se tukee litiumionien palautuvaa lisäystä ja uuttamista kahden prosessin, interkalaation ja konversion kautta. Tämä lisää merkittävästi sen kumulatiivista kapasiteettia, mikä puolestaan voi parantaa akun käyttöikää ja suorituskykyä.

Toisin kuin tavanomaisissa interkalaatio/muunnostyyppisissä elektrodeissa, palautuva syklin vakaus johtuu a-LiFeSO4:n luontaisesta amorfisesta rakenteesta jonka rakenteellinen eheys ei ole vakavasti häiriintynyt edes konversioreaktion jälkeen, mikä mahdollistaa sen jatkumisen interkalaation isäntänä.

Tutkijat uskovat, että tämä interkalaatio-/konversioreaktion syklin vakaus voidaan yleisesti laajentaa erilaisiin amorfisiin interkalaatiomateriaaleihin, mikä tarjoaa uusia oivalluksia suurikapasiteettisten elektrodien suunnitteluun hyödyntämällä monimekanistisia litiaatioprosesseja.

Aiheista aiemmin:

Uudenlainen elektrodirakenne tehokkaammille akuille

Akun anodi ja katodi osana kotelointia

Akkuja ilman kriittisiä raaka-aineita

28.03.2024Kertakäyttöiset tekoälyanturit terveyden seurantaan
27.03.2024Kvantti-interferenssi ja transistori
26.03.2024Robotti tarttuu lihanpalaan ja keskustelee kaverinsa kanssa
25.03.2024Piin kanssa yhteensopivia magneettisia pyörteitä
23.03.2024Kaksitoiminen katalyytti tekee sen halvemmalla
22.03.2024Hiilinanoputket käyttöön
21.03.2024Fotonisirut valtaavat alaa
21.03.2024Uusi 2D-materiaalien maailma on avautumassa
19.03.2024Suprajohteet auttavat tietokoneita "muistamaan"
18.03.2024Kvanttimateriaalitutkimuksen uudet työkalut

Siirry arkistoon »