Vallankumous fotoniikassa

02.03.2016

Moskova-Kuparia-nanofotoniikkaan-2-300-t.jpgVallankumous tulee tällä kertaa Moskovasta. Moskova Institute of Physics and Technologyn (MIPT) tutkijat ovat osoittaneet, että kupariset nanofotoniikan komponentit voivat toimia erinomaisesti fotoniikan laitteissa.

Kuparinen vaihtoehto on yhtä hyvä kuin jalometalleihin perustuvat, mutta lisäksi ne voidaan toteuttaa helposti integroiduissa piireissä käyttäen alan standardeja valmistusprosesseja.

"Tämä on eräänlainen vallankumous - kupari- ratkaisee yhden suurimmista ongelmista nanofotoniikassa," toteavat tutkijat MIPT:n tiedotteessa.

Nanofotoniikalla pyritään korvaamaan nykyinen elektroneihin perustuva elektroniikka fotoneilla toimivilla. Tähän päästään alittamalla valon diffraktioraja plasmonisten ilmiöiden avulla, jollaisia voidaan tuottaa metalli-dielektrisillä rakenteilla.

Tähän asti on oletettu, että vain kullasta ja hopeasta voitaisiin tehdä tehokkaita metalli-dielektrisiä nanorakenteita. Kuitenkin näistä jalometalleista on erittäin vaikeaa, kallista ja joskus jopa mahdotonta tuottaa tarvittavia nanorakenteita.

Useimmat metallit ovat optisilla taajuuksilla negatiivisesti permittiivisiä eli valo ei voi edetä niissä 25 nanometriä syvemmälle. Kuitenkin MIPT:n tutkijat teoretisoivat jo vuonna 2012, että kupari on paitsi optinen materiaali ja voisi olla jopa parempi vaihtoehto.

Tutkijoilta vei kaksi vuotta hankkia tarvittavat laitteet ja kehittää valmistusprosessi ja vahvistaa tämä hypoteesi kokeellisesti. "Tämän seurauksena olemme onnistuneet valmistamaan kuparikalvoja, joiden optiset ominaisuudet eivät ole millään tavalla huonompia kuin kulta-perustaisilla rakenteilla", kertoo tutkimuksen johtaja Dmitri Fedyanin.

Nämä tutkimustulokset tarjoavat perustan käytännön kuparisille nanofotoniikan ja plasmoniikan komponenteille, joita aivan lähitulevaisuudessa voidaan käyttää luomaan ledejä, nanolasereita, erittäin herkkiä antureita ja muuntimia mobiililaitteisiin sekä tehokkaita optosähköisiä prosessoreita, näytönohjaimiin, henkilökohtaisiin tietokoneisiin ja supertietokoneisiin.

21.04.2021Fotoninen MEMS-kytkin kaupallistuu
20.04.2021Kaksiulotteista suprajohtavuutta kolmiulotteisessa suprajohteessa
19.04.2021Valoa läpi kannon ja kiven
16.04.2021Grafeeni ja terahertsit
15.04.2021Eksotiikkaa maagisen kulman grafeenissa
14.04.2021Uusi näkemys akkumateriaalin roolista
13.04.2021Alumiinianodi tarjoaa kestävän vaihtoehdon
12.04.2021Maailman nopein spintroninen p-bitti
09.04.2021Kohti atomipohjaista radioviestintää
08.04.2021Antiferromagneettinen läpimurto

Siirry arkistoon »