Vallankumous fotoniikassa

02.03.2016

Moskova-Kuparia-nanofotoniikkaan-2-300-t.jpgVallankumous tulee tällä kertaa Moskovasta. Moskova Institute of Physics and Technologyn (MIPT) tutkijat ovat osoittaneet, että kupariset nanofotoniikan komponentit voivat toimia erinomaisesti fotoniikan laitteissa.

Kuparinen vaihtoehto on yhtä hyvä kuin jalometalleihin perustuvat, mutta lisäksi ne voidaan toteuttaa helposti integroiduissa piireissä käyttäen alan standardeja valmistusprosesseja.

"Tämä on eräänlainen vallankumous - kupari- ratkaisee yhden suurimmista ongelmista nanofotoniikassa," toteavat tutkijat MIPT:n tiedotteessa.

Nanofotoniikalla pyritään korvaamaan nykyinen elektroneihin perustuva elektroniikka fotoneilla toimivilla. Tähän päästään alittamalla valon diffraktioraja plasmonisten ilmiöiden avulla, jollaisia voidaan tuottaa metalli-dielektrisillä rakenteilla.

Tähän asti on oletettu, että vain kullasta ja hopeasta voitaisiin tehdä tehokkaita metalli-dielektrisiä nanorakenteita. Kuitenkin näistä jalometalleista on erittäin vaikeaa, kallista ja joskus jopa mahdotonta tuottaa tarvittavia nanorakenteita.

Useimmat metallit ovat optisilla taajuuksilla negatiivisesti permittiivisiä eli valo ei voi edetä niissä 25 nanometriä syvemmälle. Kuitenkin MIPT:n tutkijat teoretisoivat jo vuonna 2012, että kupari on paitsi optinen materiaali ja voisi olla jopa parempi vaihtoehto.

Tutkijoilta vei kaksi vuotta hankkia tarvittavat laitteet ja kehittää valmistusprosessi ja vahvistaa tämä hypoteesi kokeellisesti. "Tämän seurauksena olemme onnistuneet valmistamaan kuparikalvoja, joiden optiset ominaisuudet eivät ole millään tavalla huonompia kuin kulta-perustaisilla rakenteilla", kertoo tutkimuksen johtaja Dmitri Fedyanin.

Nämä tutkimustulokset tarjoavat perustan käytännön kuparisille nanofotoniikan ja plasmoniikan komponenteille, joita aivan lähitulevaisuudessa voidaan käyttää luomaan ledejä, nanolasereita, erittäin herkkiä antureita ja muuntimia mobiililaitteisiin sekä tehokkaita optosähköisiä prosessoreita, näytönohjaimiin, henkilökohtaisiin tietokoneisiin ja supertietokoneisiin.

08.12.2022Pietsosähköä halliten ja tehostaen
07.12.2022Neljä ulottuvuutta kvanttiviestintään
06.12.2022Akkuelektrodeita kehittäen
05.12.2022Uusi konsepti aurinkokennoille
02.12.2022Monitoimiset metapintojen antennit
01.12.2022Paremmilla transistoreilla vai peräti ilman
30.11.2022Kasvihuonekaasu CO2 akun komponentiksi
29.11.2022Kuitua kvanttiviestinnälle
28.11.2022Älykkäästi reagoivaa materiaalia
25.11.2022Aikalinssi tuottaa ultranopeita pulsseja

Siirry arkistoon »