Turvallisempia ja edullisempia akkuja

18.08.2016

ETH-Zur-solid-electrolyte-2-300-t.jpgMonissa laboratorioissa kehitellään kiinteään elektrolyyttiin perustuvia akkutekniikoita, jolloin akku ei olisi kovin syttymisherkkä.

Haasteena on kuitenkin saada elektrodien ja kiinteän elektrolyytin rajapinta sellaiseksi, että varaukset voivat liikkua niiden välillä niin vähäisellä vastuksella kuin mahdollista.

ETH Zurichin tutkijat ovat nyt päässeet tähän tavoitteeseen rakentamalla akun, jossa litiumgranaatti toimii kiinteänä elektrolyyttinä. Litiumgranaatti on yksi materiaaleista, joilla on korkein tunnettu johtavuus litium-ioneille.

Tutkijat tuottivat kiinteälle elektrolyyttikerrokselle huokoisen pinnan. Sitten huokosiin valutettiin viskoosissa muodossa miinusnavan materiaali. Näin saatiin merkittävästi parannettua negatiivisen navan ja kiinteän elektrolyytin välistä rajapintaa.

Lopuksi akku karkaistiin 100 Celsius-asteessa. Näin tuotettu akku voi teoriassa toimia myös normaalissa huoneenlämmössä mutta parhaiten se toimii yli 95 Celsius-asteessa. Tätä ominaisuutta voitaisiin hyödyntää akun käytöllä voimalaitoksissa, joissa syntyy hukkalämpöä. Vastaava ohutkalvoakku voisi toimia myös piisirulla.

HZB-Li-IoN-kapasiteetti-kuusinkertaiseksi-200-t.jpgRyhmä Helmholtz-Zentrum Berlinin (HZB) tutkijoita on puolestaan tutkinut ensimmäistä kertaa yksityiskohtaisesti, miten litium-ionit kulkeutuvat ohueen kalvoon piitä.

Ryhmä osoitti neutroneilla tehdyissä mittauksissa, että litiumionit eivät tunkeudu piihin kovin syvälle. Latausjakson aikana piianodiin kehittyy 20 nanometrinen kerros, joka sisältää erittäin suuren osuuden litiumia. Tämä tarkoittaa, että erittäin ohut kerros piitä riittäisi saavuttamaan maksimaalinen litiumin määrän.

Työssään tutkijat löysivät anodista kaksi eri vyöhykettä. Elektrolyytin rajalle syntyneessä 20 nanon kerroksessa on erittäin korkea litiumpitoisuus: 25 litiumatomia 10 piiatomin joukossa. Sitä seuraavassa kerroksessa oli vain yksi litiumatomi kymmentä piiatomia kohden.

Kun näin ohut kerros riittäisi litiumien absorboimiseen se säästää ainakin materiaalikuluissa. Muuten tämä vain muutamaan lataus-purkujaksoon liittyvä tutkimus ei sinänsä ota kantaa piin turpoamiseen liittyvään ongelmaan.

Tutkijat arvioivat tämäntyyppisin pii-litium-akun teoreettisen maksimikapasiteetin olevan noin kuusinkertainen, siihen mitä saavutetaan grafiittianodisella litium-ioni-akulla.

Aiheesta aiemmin:

Lupaava piianodi litium-ioni-akulle

22.03.2019Laveampaa kvantti-informaation vaihtoa
21.03.2019RF-fotoneja ja kvanttihyppyjä
20.03.2019Säädettävää ja äänennopeaa lämmönjohdetta
19.03.2019Molekyylielektroniikan toimintoja kvantti-interferenssillä
18.03.2019Nesteitä ja molekyylejä sähkön tuottajiksi
15.03.2019Moiré-kuviot tuottavat superhiloja
14.03.2019Kvanttivaloa ja kvanttipisteitä
13.03.2019Kävisikö pii sittenkin akkuanodiksi
12.03.2019DNA-tietotekniikka tehostuu
11.03.2019Kvanttianturi tehostaa syövän hoitoa

Siirry arkistoon »