Magneettis-sähköinen materiaali

26.09.2016

Berkely_Lab_kytkea_magneettisia_ja_sahkoisia_materiaaleja-2-300-t.jpgUusi multiferroinen materiaali, jonka Berkeley Labin ja Cornellin yliopiston tutkijat ovat kehittäneet, on iso askel kohti ultra-low power elektroniikkaa.

Tutkijat ovat onnistuneesti yhdistäneet ferrosähköistä ja ferrimagneettista materiaaleja siten, että niiden suuntausta voidaan ohjata pienellä sähkökentällä lähellä huoneen lämpötilaa. Tällainen saavutus voisi viedä kohti erittäin pienen tehonkäytön mikroprosessoreita, muistipiirejä ja seuraavan sukupolven elektroniikkaa.

Tutkijoiden koostama lutetiumrautaoksidin (LuFeO3) ohutkalvon tiedetään olevan vahvasti ferrosähköinen mutta ei voimakkaasti magneettisinen. Se koostuu erilaisista vuorottelevista lutetiumin ja rautaoksidien kerroksista.

Aikaansaatu rakenne muutti merkittävästi materiaalin ominaisuuksia ja tuotti voimakkaasti ferrimagneettisen kerroksen lähellä huoneen lämpötilaa. Testattaessa materiaalia osoitti, että ferrimagneettiset atomit seurasivat ferrosähköisten naapuriensa linjausta sähkökentällä ohjattuna.

Tutkijat etsivät vähemmän energiaa kuluttavia vaihtoehtoja nykyiselle puolijohde-elektroniikalle uusista suunnista. Yksi niistä liittyy ferroisiin materiaaleihin. Ferrosähköisten tärkeimpiin etuihin kuuluvat niiden palautuva polarisaatio vasteena pienitehoisille sähkökentille ja niiden kyky pitää polarisoitunutta tilaansa ilman jatkuvaa käyttötehoa.

Ferro- ja ferrimagneettisuudella on samanlaisia piirteitä kuten esimerkiksi vaste magneettikentille ja niitä käytetään kiintolevyissä ja antureissa.

Yhdistää ferrosähköisiä ja ferrimagneettisia materiaaleja yhdeksi multiferroiseksi kalvoksi voisi yhdistää molempien edut ja mahdollistaa laajemmat muistisovellukset minimaalisilla tehovaatimuksilla.

Kuvassa näkyvät samankeskiset kuviot ferrosähköisillä "ylös" ja "alas" polarisaatiolla (punainen ja turkoosi) lutetiumferriittikalvossa on luotu sähkökentän avulla. Valoemission elektronimikroskopian harmaasävykuvio osoittaa, että magnetismi seuraa ferrosähköistä rakenneta vaikka mitään magneettikenttää ei ole sovellettu.

Aiheesta aiemmin:

Sähkö ja magnetismi löysivät toisensa

Sähkö ja magnetismi samassa materiaalissa

15.02.2025Kupariset kukat kukkivat keinolehdillä
14.02.2025Kvanttiverkot vakaammiksi yhteyksiä lisäämällä
14.02.2025Lomittumista makrotasolla
13.02.2025Atomien avulla parempia metamateriaaleja
13.02.2025Käänteinen suunnittelu pelin muuttajana fysiikassa
12.02.2025Metamateriaali piin pinnalla vauhdittaa elektroneita
12.02.2025Porttiohjattavilla kaksiulotteisilla TMD:llä spintronisia muisteja
11.02.2025Omavoimainen älyanturi poistaa haavanhoidon kivun
11.02.2025Printattavia monimolekyylisiä biosensoreita
10.02.2025Muisti-innovaatiot tasoittavat tietä EU:n tietotekniikan riippumattomuudelle

Siirry arkistoon »