Uudenlainen 3D-valmistus

18.03.2017

Washington-biotyyppista-3D-printtausta-275.jpgWashington State Universityn (WSU) tutkijat ovat kehittäneet uudenlaisen kolmiulotteisen tulostusvalmistusmenetelmän tuottaa rakenteita, jotka matkivat luonnonmateriaalien monimutkaisia arkkitehtuureja, kuten puu ja luu.

"Tämä on uraauurtava edistysaskel 3D materiaaliarkkitehtuurille nano- ja makroskaaloissa ja luo sovelluksia akuille, kevyille ultravahvoille materiaaleille, katalysaattoreille, superkondensaattoreille ja biologiset kehikkorakenteille", toteaa tutkimusta johtanut Rahul Panat.

Menetelmässä käytetään sumumaisia mikropisaroita, jotka sisältävät hopean nanohiukkasia. Kun sumun neste kohteessaan haihtuu, nanohiukkaset luovat rakenteita, joilla on erittäin suuri pinta-ala ja ovat erittäin vahvoja.

Hopea käytettiin, koska se kanssa on helppo työskennellä. Kuitenkin menetelmä voidaan laajentaa mihin tahansa muuhun materiaaliin, joka voidaan murskata nanohiukkasiksi - ja lähes kaikki materiaalit voidaan.

Valmistusmenetelmä muistuttaa erästä luonnon prosessia, jossa pienet rikkiä sisältävät sumupisarat haihtuvat kuuman läntisen Afrikan autiomaan yli kulkiessaan ja aiheuttaa kiteisiä kukan kaltaisia rakenteita, joita kutsutaan "aavikkoruusuiksi."

Nykyään myös elektroniikan piirilevyjä valmistetaan mustesuihkutulostuksella. Ongelmaksi muodostuu se, että komponentteja ei voi siihen liittää perinteisillä teollisilla juotosmenetelmillä.

Aihetta on tutkittu muun muassa Tampereen ja Oulun yliopistossa missä selvitettiin pintaliitoskomponenttien liimauksen luotettavuutta printatuille piirilevyille.

Joukko tutkijoita Barcelonan yliopistosta ovat nyt esittäneet uuden liitostekniikan kyseiseen ongelmaan. Siinä käytetään mustetta, joka sisältää hopeisia nanopartikkeleita.

Sopiviin kohtiin ohjattu muste siirtyy kapillaarisesti komponentinjalan ja piirilevypädin väliin. Hyödyntämällä nanomittakaavan pintaenergioita menettely tuottaa korkean sähkönjohtavuuden hyvin alhaisissa lämpötiloissa tapahtuneen termisen prosessi jälkeen.
30.06.2017Kohti kvanttitietokoneita askel kerrallaan
29.06.2017Merivedellä toimiva akku
28.06.2017Galileon ja Eisteinin jalanjäljissä
27.06.2017Nopeampia neuroverkkoja syväoppimiseen
22.06.2017Langaton lähilataus tehostuu
21.06.2017Kytkeä biologiaa elektroniikan kanssa
20.06.2017Suprajohteisia muistipiirejä
19.06.2017Vähemmän tilaa vieviä elektroniikkapiirejä
16.06.2017Grafeenista elektrodit molekyylielektroniikalle
15.06.2017Akun lataus tankkausletkusta

Siirry arkistoon »