Uudenlainen 3D-valmistus

18.03.2017

Washington-biotyyppista-3D-printtausta-275.jpgWashington State Universityn (WSU) tutkijat ovat kehittäneet uudenlaisen kolmiulotteisen tulostusvalmistusmenetelmän tuottaa rakenteita, jotka matkivat luonnonmateriaalien monimutkaisia arkkitehtuureja, kuten puu ja luu.

"Tämä on uraauurtava edistysaskel 3D materiaaliarkkitehtuurille nano- ja makroskaaloissa ja luo sovelluksia akuille, kevyille ultravahvoille materiaaleille, katalysaattoreille, superkondensaattoreille ja biologiset kehikkorakenteille", toteaa tutkimusta johtanut Rahul Panat.

Menetelmässä käytetään sumumaisia mikropisaroita, jotka sisältävät hopean nanohiukkasia. Kun sumun neste kohteessaan haihtuu, nanohiukkaset luovat rakenteita, joilla on erittäin suuri pinta-ala ja ovat erittäin vahvoja.

Hopea käytettiin, koska se kanssa on helppo työskennellä. Kuitenkin menetelmä voidaan laajentaa mihin tahansa muuhun materiaaliin, joka voidaan murskata nanohiukkasiksi - ja lähes kaikki materiaalit voidaan.

Valmistusmenetelmä muistuttaa erästä luonnon prosessia, jossa pienet rikkiä sisältävät sumupisarat haihtuvat kuuman läntisen Afrikan autiomaan yli kulkiessaan ja aiheuttaa kiteisiä kukan kaltaisia rakenteita, joita kutsutaan "aavikkoruusuiksi."

Nykyään myös elektroniikan piirilevyjä valmistetaan mustesuihkutulostuksella. Ongelmaksi muodostuu se, että komponentteja ei voi siihen liittää perinteisillä teollisilla juotosmenetelmillä.

Aihetta on tutkittu muun muassa Tampereen ja Oulun yliopistossa missä selvitettiin pintaliitoskomponenttien liimauksen luotettavuutta printatuille piirilevyille.

Joukko tutkijoita Barcelonan yliopistosta ovat nyt esittäneet uuden liitostekniikan kyseiseen ongelmaan. Siinä käytetään mustetta, joka sisältää hopeisia nanopartikkeleita.

Sopiviin kohtiin ohjattu muste siirtyy kapillaarisesti komponentinjalan ja piirilevypädin väliin. Hyödyntämällä nanomittakaavan pintaenergioita menettely tuottaa korkean sähkönjohtavuuden hyvin alhaisissa lämpötiloissa tapahtuneen termisen prosessi jälkeen.
19.10.2017Valoilmaisimet tuplaavat tehokkuutensa
18.10.2017Plasmoniikan avulla vetyä merivedestä
17.10.2017Sähköisesti muokattava atomirakenne
16.10.2017Akkuja uusiutuvalle energialle
13.10.2017Kohina tehostaa signaalin siirtoa
12.10.2017Supertietokone valon ja aineen yhdistelmästä
11.10.2017Lämpösähköä puettaville
10.10.2017Grafeenia kolmiulotteisiin muotoihin
09.10.2017Kaistaeroa tilauksesta
06.10.2017Asfaltti nopeuttaa litiumakkujen latautumista

Siirry arkistoon »