Materiaaleja atomi kerrallaan

30.03.2017

Aalto-materiaaleja-atomi-kerrallaan-300-t.jpgAalto-yliopiston tutkijat ovat valmistaneet keinotekoisia materiaaleja, joilla on tavoiteltuja elektronisia ominaisuuksia.

Keinotekoiset materiaalit luotiin järjestelemällä kloorivakansseja kuparikiteen pinnalla tunnelointimikroskooppia käyttäen neljän kelvinasteen (–269 °C) lämpötilassa.

”Atomirakenne määrittelee tietysti sähköiset ominaisuudet myös oikeissa materiaaleissa, mutta keinotekoisten materiaalien kohdalla hallitsemme rakennetta täysin. Periaatteessa voisimme ottaa kohteeksi minkä tahansa elektronisen ominaisuuden ja toteuttaa sen kokeellisesti”, toteaa Robert Drost, joka toteutti kokeet Aalto-yliopistossa.

Menetelmää voidaan soveltaa moniin pinta- ja nanotieteen tunnettuihin järjestelmiin. Se voidaan jopa mukauttaa mesoskooppisiin järjestelmiin, kuten kvanttipisteisiin, joita hallitaan litografisten prosessien avulla.

Saavutuksellaan tutkijaryhmä todisti, että sähköistä rakennetta voidaan hallita rakennetuissa atomihiloissa. He loivat kaksi erilaista keinotekoista rakennetta. Ensimmäisessä järjestelmässä, niin kutsutussa dimeeriketjussa, saadaan aikaan topologisia faasirajatiloja.

”Topologisten kvanttimateriaalien tutkimus on yksi nykyfysiikan aktiivisimmista tutkimusaiheista. Tutkimustuloksemme osoittavat, että ala on kehittynyt siihen pisteeseen, että aineen eksoottisia faaseja voidaan suunnitella ja valmistaa keinotekoisesti”, akatemiatutkija Teemu Ojanen selittää.

Toisella tutkituista järjestelmistä, Liebin hilalla, on eksoottinen elektronirakenne, joka voi olla merkityksellinen keinotekoisten magneettisten tai suprajohtavien materiaalien toteuttamisen kannalta.

”On ennustettu, että tässä järjestelmässä on niin sanottu litteä vyö, jossa elektronit käyttäytyvät aivan kuin niiden massa olisi hyvin suuri, mikä voi johtaa magneettisuuteen ja suprajohtavuuteen. Aiomme testata tätä tulevissa tutkimuksissa”, Harju selittää.

”Tutkimustuloksemme avaavat uuden tutkimusalueen, jossa kokeellisten ja teoreettisten tutkimusryhmien tiivis yhteistyö johtaa varmasti moniin jännittäviin löytöihin. On harvinaista, että voimme keksiä teoreettisesti jonkin rakenteen, jossa on kiinnostavia ominaisuuksia, ja sitten kävellä suoraan laboratorioon toteuttamaan sen käytännössä”, Liljeroth summaa.
27.03.2024Kvantti-interferenssi ja transistori
26.03.2024Robotti tarttuu lihanpalaan ja keskustelee kaverinsa kanssa
25.03.2024Piin kanssa yhteensopivia magneettisia pyörteitä
23.03.2024Kaksitoiminen katalyytti tekee sen halvemmalla
22.03.2024Hiilinanoputket käyttöön
21.03.2024Fotonisirut valtaavat alaa
21.03.2024Uusi 2D-materiaalien maailma on avautumassa
19.03.2024Suprajohteet auttavat tietokoneita "muistamaan"
18.03.2024Kvanttimateriaalitutkimuksen uudet työkalut
16.03.2024Räjähtämätön vedyntuotantomenetelmä

Siirry arkistoon »