"Valleytroniikan" eteneminen mahdollista

18.05.2017

Buffalo-valleytroniikka-300-t.jpgPuolijohdefysiikan maailmassa tavoitteena on suunnitella tehokkaampia ja minimaalisempia tapoja hallita 0 ja 1.

Uusi fysiikan ala, jota kutsutaan laaksotroniikaksi (valleytronic) hyödyntää elektronin ”laaksovapautta” datan tallentamisen ja logiikan sovelluksiin. Yksinkertaisesti kuvailtuna laaksot ovat elektronin suurin ja pienin energia kiteisessä kiinteässä aineessa. Menetelmällä ohjata elektroneja eri laaksoihin voitaisiin tuottaa erittäin tehokkaita piirejä.

Buffalon Universityn johtamat kansainväliset fysiikan tutkijat ovat löytäneet uuden tavan jakaa energiatasot laaksojen välillä kaksiulotteisessa puolijohteessa.

Avain löytöön on käyttää ferromagneettista yhdistettä vetämään laaksot erilleen ja säilyttää ne eri energiatasoissa. Tämä johtaa laaksoenergioiden erottamisen kasvuun tekijällä 10 eli enemmän kuin mikä on saatu käyttämällä ulkoista magneettikenttää.

Yleensä atomaarisen ohuissa puolijohteissa on kaksi laaksoa täsmälleen samalla energiatasolla. Ulkoisen magneettikentän avulla niille voidaan saada eroa mutta siihenkin tarvittaisiin erittäin voimakas magneettikenttä.

Eri energiatason omaavia laaksoja voidaan käyttää binääritietoja käsittelevinä kytkiminä erittäin vähäisillä energiamäärillä.

Buffalon professori Hao Zeng ja hänen kollegansa loivat kaksikerroksisen heterorakenteen, jossa on 10 nanometrin paksuinen kalvo magneettista EUS-materiaali (europium sulfidi) pohjalla ja yksi kerros WSe2:ta (volframi diselenidi) päällä. Pohjakerroksen magneettikenttä saa aikaan energianlaaksojen erottumisen WSe2:ssa.

”Niin kauan kuin meillä on magneettista materiaalia siellä, laaksot pysyvät erillään toisistaan. Tämä tekee sen arvokkaaksi haihtumattomissa muistisovelluksissa,” toteavat tutkijat yliopistonsa tiedotteessa.

Koe suoritettiin 7 Kelvnissä (-266.15 Celsius), joten aivan jokapäiväiseen käyttöön prosessi on kaukana tulevaisuudessa. On kuitenkin osoittautunut mahdolliseksi ottaa ensimmäinen askel.

Aiheesta aiemmin:

Kuoppaista elektroniikkaa

17.11.2017Kaksiulotteisilla kohti vähäkulutuksista elektroniikkaa
15.11.2017Kvanttimateriaali elektronisille innovaatioille
14.11.2017Ultranopeaa magnetismia muisteille
13.11.2017Valo elektroniikkaa kokoamaan
10.11.2017Nestemetalli vauhdittaa oksidielektroniikkaa
09.11.2017Hiilinanoputkien ohutkalvoista lämpösähköä
07.11.2017Uutta puhtia kvanttitietokoneen kehitykseen
06.11.2017Grafeeni ja transistorit
03.11.2017Kosketuksilla ja eleillä ohjaten
02.11.2017Tulostamalla nanofotoniikkaa

Siirry arkistoon »