Metamateriaali ratkoo yhtälöitä

26.03.2019

Penn-metamateriaali-ratkoo-yhtaloita-1-300.jpgTutkijoiden metamateriaalilaskin on kuvioitu polystyreenimuovista. Sen monimutkainen muoto edustaa osaa spesifisestä integraaliyhtälöstä, joka voidaan ratkaista eri muuttujille, jotka koodataan laitteeseen ajetuille mikroaalloille.

Pennsylvanian yliopiston insinöörit ovat suunnitelleet metamateriaalilaitteen, joka pystyy ratkaisemaan yhtälöitä.

Kehitetty "fotoninen laskenta" toimii koodaamalla parametreja saapuvan sähkömagneettisen aallon ominaisuuksiin ja siirtämällä ne metamateriaalilaitteen läpi; laitteen sisällä ainutlaatuinen rakenne manipuloi aaltoa siten, että se tulostaa ennalta asetettuun integraaliseen yhtälöön koodatun ratkaisun kyseiselle tulolle.

Heidän konseptin todistus kokeilu tehtiin mikroaalloilla, koska niiden pitkät aallonpituudet sallivat helpommin konstruoitavan makrotason laitteen. Havaintojensa taustalla olevat periaatteet voidaan kuitenkin skaalata valoaalloiksi, sopien lopulta mikrosiruun.

Tällaiset metamateriaalilaitteet toimivat analogisina tietokoneina, jotka toimivat valolla eikä sähköllä. Ne voisivat ratkaista integraali yhtälöitä - kaikkialla esiintyviä ongelmia kaikilla tieteen ja tekniikan toimialoilla - suuruusluokkaa nopeammin kuin digitaaliset kollegansa, samalla vähemmän virtaa käyttäen.

Tämän lähestymistavan juuret ovat analogisessa laskennassa. Ensimmäiset analogiset laskimet ratkaisivat matemaattisia ongelmat käyttäen mekaanisia vipuja ja hammaspyöriä. Elektroniset analogiset tietokoneet korvasivat ne 1900-luvun puolivälissä mutta uudelleen konfiguroitavien, ohjelmoitavien digitaalisten tietokoneiden tulo, joka alkoi vuonna 1945 Pennissä rakennetusta ENIACista, teki niistäkin sitten vanhentuneita.

Nader Engheta ja hänen tiiminsä julkaisivat teoreettinen hahmotelma "fotonisesta laskennasta" vuonna 2014, ja nyt hänen tiiminsä on ajanut fyysisiä kokeita, jotka vahvistavat tämän teorian ja ratkaisee yhtälöitä.

"Laitteemme sisältää dielektrisen materiaalin lohkon, jolla on hyvin spesifinen ilma-aukkojen jakauma", Engheta sanoo. "Tiimimme haluaa kutsua sitä" sveitsiläiseksi juustoksi."

Sähkömagneettisten aaltojen vuorovaikutusten hallitseminen tällä metastruktuurilla on avain yhtälön ratkaisemiseen. Kun järjestelmä on asennettu oikein, se mitä saat ulos, on ratkaisu integraaliyhtälöön.

Sveitsiläisen juuston onttojen alueiden kuvio määritetään ennalta ratkaisemaan integraalinen yhtälö tietyn tapauskohtaisen "kernelin" avulla. Se on yhtälön osa, joka kuvaa kahden muuttujan välistä suhdetta. Esiasetettu yhtälö voidaan ratkaista mihin tahansa mielivaltaiseen tuloon, joita edustaa laitteeseen syötettyjen aaltojen vaiheet ja suuruudet.

"Vaikka tämä on konseptivaiheessa, laite on erittäin nopea elektroniikkaan verrattuna", Engheta sanoo. "Mikroaaltoanalyysimme on osoittanut, että ratkaisu voidaan saada sadoissa nanosekunneissa, ja kun siirrämme sen optiikkaan, nopeus olisi pikosekunteja."

Käsitteen skaalautuminen mittakaavaan, jossa se voisi toimia valoaalloilla ja joka sijoitettaisiin mikrosirulle, tekisi ne vain käytännöllisemmiksi laskennassa.

"Voisimme käyttää uudelleen kirjoitettavien CD-levyjen perustana olevaa tekniikkaa tekemään uusia sveitsiläisten juustomalleja sitä mukaa kun niitä tarvitaan", Engheta sanoo. "Jonain päiviä saatat ehkä tulostaa oman muokattavan analogisen tietokoneen kotona!"

Aiheesta aiemmin:

Uusia sovelluksia metamateriaaleille

Analogista laskentatekniikkaa avaruuteen

22.05.2019Erittäin nopeita magneettisia muisteja
21.05.2019Happea akkujen kehitykseen
20.05.2019Neulanreiät hologrammeja tuottamaan
17.05.2019Lasketaan nopeammin kvasihiukkasilla
16.05.2019Kondensaattoreita tulostamalla
15.05.2019Kvanttitietotekniikkaa grafeenin ja piin avulla
14.05.2019Suurtaajuussiirto tehostuu grafeenilla
13.05.2019Aivomaista tietotekniikkaa
11.05.2019Kvanttitason mittauksia
09.05.2019Tehokkaampia muistimateriaaleja
08.05.2019Lämpösähköä spinien tasolta
07.05.2019Suurin ja nopein optinen kytkinpiiri
06.05.2019Tehokkaita lämpöjohteita nanoelektroniikalle
03.05.2019Monenlaista ledien värien hallintaa
02.05.2019Staattinen negatiivinen kondensaattori
30.04.2019Kompaktia pitkäaaltoista viestintää
29.04.2019Nanoklustereista puolijohteita
26.04.2019Uudenlainen spintransistori
25.04.2019Aurinkoa seuraten
24.04.2019Kvanttimateriaali aivojen kaveriksi
23.04.2019Uusia rakenteita Litium-ioni akuille
18.04.2019Spinaaltoja nanoelektroniikkaan
17.04.2019Huonelämpötilassa toimivia keinotekoisia atomeja
16.04.2019Uusi ihmemateriaali: yksittäisiä 2D-fosforeeninauhoja
15.04.2019Eksoottisia kvanttivaikutuksia
12.04.2019Fononeja suunnaten ja laseroiden
11.04.2019Kuparipohjainen vaihtoehto kullalle
09.04.2019Vanhassa vara parempi
08.04.2019Mainoksen esittelyteksti
08.04.2019Tehokkaita ledejä nanolangasta
05.04.2019Nanogeneraattori kankaalle 3D-tulostuksella
03.04.2019Topologiaa valoaalloille
02.04.2019Kolme mittausta yhdellä selluanturilla
01.04.2019Monipuolisia orgaanisia transistoreita
29.03.2019Kvanttisimulointia valolla
28.03.2019Sähköä syöviä mikrobeja
27.03.2019Proteiini tarjoaa vaihtoehtoja ionijohteille
26.03.2019Metamateriaali ratkoo yhtälöitä
25.03.2019Molekyylimoottorit toimivat yhdessä
22.03.2019Laveampaa kvantti-informaation vaihtoa
21.03.2019RF-fotoneja ja kvanttihyppyjä
20.03.2019Säädettävää ja äänennopeaa lämmönjohdetta
19.03.2019Molekyylielektroniikan toimintoja kvantti-interferenssillä
18.03.2019Nesteitä ja molekyylejä sähkön tuottajiksi
15.03.2019Moiré-kuviot tuottavat superhiloja
14.03.2019Kvanttivaloa ja kvanttipisteitä
13.03.2019Kävisikö pii sittenkin akkuanodiksi
12.03.2019DNA-tietotekniikka tehostuu
11.03.2019Kvanttianturi tehostaa syövän hoitoa
08.03.2019Miten olisi magnonielektroniikka?
07.03.2019Spintroniikka näyttää kykynsä
06.03.2019Eriväristen fotonien lomittaminen
05.03.2019Ionisia transistoreita bioelektroniikalle
04.03.2019Valon ansoittaminen kolmiulotteisesti
04.03.2019Muokattava kaistaero grafeenilla
28.02.2019Magneettisuus kääntyy sähkökentällä
27.02.20193D-tulostuksella mekaanisia logiikkaportteja
26.02.2019Kertakäyttöisiä antureita 3D-tulostuksella
25.02.2019Kierteisiä elektroneja ja eksitoneja
25.02.2019Käännetään ledi jäähdyttäjäksi
21.02.2019Monimuotoisia kaksiulotteisia
20.02.2019Huonelämpöinen alusta kvanttiteknologialle
19.02.2019Lisäkalvo tekee litiumioniakuista turvallisia
18.02.2019Uusia materiaaleja elektroniikalle
15.02.2019Elektronien nestettä huonelämpötilassa
14.02.2019Parempaa orgaanista seostusta ja rajapintoja
13.02.2019Eksitoneja, bieksitoneja ja polaritoneja samassa materiaalissa
12.02.2019Muistitekniikan kehityssuuntia
11.02.2019Vähemmän kohinaa
08.02.2019Protoneista akkujen varausten siirtäjä?
07.02.2019Negatiivista kapasitanssia
06.02.2019Grafeeniantureita aivoihin ja mikropiireille
05.02.2019Hiilidioksidipäästöt vedyksi ja sähköksi
04.02.2019Nopeutta orgaanisille akuille
01.02.2019Kahdenlaisia varauksenkantajia suprajohteissa
31.01.2019Energian keruuta MEMS:llä ja fraktaaleilla
30.01.2019Anturiverkoille mallia sammakoilta
29.01.2019Valon ohjelmointia sirulla
28.01.2019Kemiallista logiikkaa
25.01.2019Lentäviä optisia kissoja kvanttiviestintään
24.01.20193D-printattua pietsomateriaalia
23.01.2019Epätavalliset ratkaisut tehostavat magnesiumakkuja
22.01.2019Valolla kirjoitettavia magneettisia muisteja
21.01.2019Tehokkain kvanttitietokone yhden atomin kubitilla
18.01.2019Läpimurtoja orgaaniselle elektroniikalle
17.01.2019Virtausanturi verelle
17.01.2019Suunniteltuja materiaaleja fotonien hyödyntämiseksi
15.01.2019Perovskiitista spintroniikan perusta?
14.01.2019Spinkuvioita korkean lämpötilan suprajohteissa
11.01.2019Kvanttimateriaaleja puolijohteiden tilalle
10.01.2019Eksitonit avaavat tietä tehokkaampaan elektroniikkaan
09.01.2019Ympäristö muuttaa molekyylin kytkimeksi
08.01.2019Itseoppimiseen tukeutuva konenäkö
07.01.2019Parempia Li-Ion -akkuja
04.01.2019Biologinen salausavainjärjestelmä
03.01.2019Origamilla mukautuva antennijärjestelmä
02.01.2019Topologisia LC-piirejä valo- ja mikroaalloille
31.12.2018Kytkin solussa sähköistää elämää
28.12.2018Yksikiteistä hybridiperovskiittia elektroniikkaan
21.12.2018Verkostoituminen menee kvanttiseksi

Näytä lisää »