Luminenssilamput kehittyvät

19.07.2019

Moskova-lamppujen-vallankumous-300-t.jpgVenäläistutkijoiden kehittämien katodiluminesenssilamppujen prototyypit. Niiden valovoima on jopa 250 lumenia (30-40 lm/W), mikä on noin 25 wattisen hehkulampun teho, mutta virrankulutus on vain 5,5 wattia.

Moskovan fysiikan ja teknologian instituutin (MIPT) ja Venäjän tiedeakatemian Lebedevin fyysinen instituutin tutkijat ovat suunnitelleet ja testanneet uudenlaista katodiluminesenssilamppua (cathodoluminescent) yleisvalaistusta ajatellen.

Uusi lamppu, joka perustuu kenttäemission ilmiöön, on luotettavampi, kestävämpi ja valoisampi kuin sen vastineet ympäri maailman.

Vaikka LED-lamput ovat yleistyneet, ne eivät ole ainoa puhdas ja energiansäästävä vaihtoehto hehkulampuille. 1980-luvulta lähtien insinöörit ympäri maailmaa ovat tutkineet niin sanottuja katodiluminesenssilamppuja toisena vaihtoehtona yleisvalaistukseen.

Katodiluminesenssiin perustuvilla valaisimilla on se etu, että ne voivat säteillä valoa lähes millä tahansa aallonpituudella, punaisesta ultraviolettiin, riippuen siitä, mitä fluoresoivaa materiaalia käytetään.

Uudet ultraviolettivalot olisivat erityisen ajankohtaisia, kun otetaan huomioon äskettäin elohopeaa käyttävien kodinkoneiden, kuten loisteputkien kieltäminen YK:n Minamata -yleissopimuksessa.

Toinen tärkeä etu uudelle lampulle ledien ja loisteputkien yli on se, että se ei tukeudu kriittisiin raaka-aineisiin. Näitä ovat gallium, indium ja jotkut harvinaisten maametallien osat.

Yhdysvalloissa on yritetty tuottaa kaupallisia katodiluminesenssilamppuja, mutta ne olivat kookkaita ja niiltä kesti useita sekunteja katodin lämmittämiseksi käyttölämpötilaan.

Kenttäemissioilmiö toteuttavat emissiokatodit eivät vaadi lämmitystä. Kylmä katodi emittoi elektroneja vain sähköstaattisen kenttään ja tunnelointiin perustuen.

Tehokkaan, pitkäkestoisen ja teknisesti edistyneen katodin suunnitteleminen, jota voidaan valmistaa massatuotannossa kohtuuhintaan, on kuitenkin osoittautunut haastavaksi.

”Meidän kenttäemissio katodimme on valmistettu tavallisesta hiilestä”, iloitsee professori Evgenii Sheshin, MIPT:n tyhjiöelektroniikan tutkija ja tutkimusryhmän vetäjä. ”Mutta tätä hiiltä ei käytetä pelkästään kemikaalina, vaan rakenteena.

Löysimme keinon muodostaa rakenteen hiilikuiduista, jotka ovat kestäviä ionipommitukselle, tuottavat korkean emissiovirran ja ovat teknisesti kohtuuhintaan tuotettavissa.”

Hiilen erikoiskäsittelyllä katodin kärkeen muodostettiin monia alle mikrometrin ulkonemia, mikä johtaa ultrakorkeisiin sähkökenttiin elektroneja tyhjiöön ohjaavissa kärjissä.

MIPT:n tutkijaryhmä on myös kehittänyt kompaktin teholähteen katodiluminesenssivalolle, joka toimittaa riittävästi kilovoltteja onnistuneelle elektronien kenttäemissiolle.

Aiheesta aiemmin:

Hukkafotonit kierrätykseen

Grafeeni realisoituu käytäntöön

23.01.2020Kiertymä muokkaa kaistaeroa
22.01.2020Yleismuistin virstanpylväs
21.01.2020Ensimmäinen antiferromagneettinen topologinen kvanttimateriaali
20.01.2020Nanoantenneja tiedonsiirtoon
17.01.2020Muisteja erittäin kylmään laskentaan
16.01.2020Laskentaa molekyyleillä
16.01.2020Konenäölle nyt myös konesilmät
14.01.2020Piin kvanttibiteillä uusiin ulottuvuuksiin
13.01.2020Uusi menetelmä kestäville GaN-transistoreille
10.01.2020Hiukkaskiihdytin mikropiirille
09.01.2020Biologista energiantuottoa
08.01.2020Kvanttiteleportaatio piifotonisella sirulla
07.01.2020Kohti spintronisia MRAM-muisteja
07.01.2020Tehokas litium-rikki akku
03.01.2020Pieniä parannuksia litiumioni-akuille
02.01.2020Kvanttimateriaalia vaikkapa naamiointiin
02.01.2020Perovskiiteistä löytyy yllätyksiä
31.12.2019Lämpökytkin polymeeristä
30.12.2019Elektroniikka valon nopeudella
23.12.2019Turvallista ja käytännöllistä viestintää
20.12.2019Ferrosähköisyys yhdistää transistorit ja muistit
19.12.2019Kytkettäviä plasmoneja muoveihin
18.12.2019Magnonit töihin
17.12.2019Lämmönsiirtoa tyhjyyden läpi
16.12.2019Nailon ja taivutus vauhdittavat orgaanista elektroniikkaa
13.12.2019Viat saattavat tehostaa akkuja
12.12.2019Hiili ja pii jakavat ja yhdistävät fotoneja
11.12.2019Timanttien avulla parempia superkonkkia
10.12.2019Sähköis-optista tietotekniikkaa
09.12.2019Lämpösähköä hiilinanoputkilla
09.12.2019Valokuitua selluloosasta
05.12.2019Näppärä terahertsinen tekniikka
04.12.2019Palamattomia litium-akkuja
03.12.2019Bittejä ja simulointia atomien mittakaavassa
02.12.2019Metallijohde Cooperin pareilla
29.11.2019Plasmoniikan avulla edullinen monispektrikamera
28.11.2019Hiilinanoputket pääsevät vauhtiin
27.11.2019Löytö ferrosähköisissä tuplaa potentiaalin
26.11.2019Antenni lämpösäteilylle
25.11.2019Jatkuvuutta Mooren laille
22.11.2019Skyrmioneja huonelämpötilassa
21.11.2019Hukkalämpö sähköksi uusin keinoin
20.11.2019Keinotekoiset lehdet tuottavat kaasua ja nesteitä
18.11.2019Fotonikytkin CMOS-piireille
15.11.2019Parempia langattomia anturitekniikoita
13.11.2019Uudenlaisia fotonisia nestekiteitä
12.11.2019Onnistumisia orgaanisissa
11.11.2019Kohti älykkäitä mikrorobotteja
09.11.2019Suomen suurin valtti kybersodassa on luottamus
08.11.2019Jäähdytystekniikkaa 3D-elektroniikalle vaikka avaruuteen
07.11.2019Uusia tiloja grafeenin taikakulmassa
06.11.2019Kohti antiferromagneettisia muisteja
05.11.2019Muuntaa 2D-tasot pehmeiksi ja joustaviksi 3D-rakenteiksi
04.11.2019Tarkempia kiderakenteita ja proteiineja aurinkokennoihin
01.11.2019Kvanttiakussa ei synny häviöitä
31.10.2019Keinoja ja visioita 2D-materiaalien käytölle
30.10.2019Käteviä ADC- ja DAC-muuntimia IoT-aikakaudelle
29.10.2019Kvanttipisteitä edullisesti ja tarkasti
25.10.2019Paljonko on kvanttilaskennan ylivoima?
24.10.2019Tehokkaampia superkondensaattoreita
23.10.2019Uudenlaisia kalvoja hiilinanoputkista
22.10.2019Valolla kohti huonelämpöistä kvanttitietokonetta
21.10.2019Japanissa kokeiltiin petabitin verkkoyhteyksiä
18.10.2019Suprajohtavuutta moduloiden
17.10.2019Spin- ja varausvirran hallintaa
16.10.2019Spektrometriaa sirupiirillä
15.10.2019Uusia ulottuvuuksia printtielektroniikalle
14.10.2019Löytö energiatehokkaalle elektroniikalle
11.10.2019Pikotiedettä ja uusia materiaaleja
10.10.2019Lomittumista 50 kilometrissä valokuitua
09.10.2019Koneoppiminen etsii uusia materiaaleja
08.10.2019Parhaat kahdesta maailmasta: Magnetismi ja Weyl -puolimetallit
07.10.2019Tehokkaampaa energian keruuta IoT-antureille
04.10.2019Uusia kierrätyskelpoisia akkukonsepteja
03.10.2019Supratekniikalla tehokkaampaa tietotekniikkaa
02.10.2019Paramagneettiset spinit tuottavat sähköä lämmöstä
01.10.2019Kolme kertaa parempi infrapunailmaisin
30.09.2019Yksisuuntainen radiotie synteettisellä Hall-efektillä
27.09.2019Katsaus kvanttilaskennan tekniikoihin
27.09.2019Muistipiirejä ilman kerrosrakennetta
25.09.2019Ennätysmäisiä aurinkokennoja
24.09.2019Topologinen eriste fotonien reitittäjäksi
23.09.2019Köyhän miehen kubitti
20.09.2019Kaksiulotteisia spin transistoreita ja muuntimia
19.09.2019Valokiteiden valmistus ja hallinta
18.09.2019Kaksi vapausastetta
17.09.2019Epätavallista magneettista käyttäytymistä
16.09.2019Nanolangat korvaavat lasiprismat
13.09.2019Tehokkaampaa sähköpolttoaineiden tuotantoa
12.09.2019Ensimmäinen monimutkainen kvanttiteleportaatio
11.09.2019Energian talteenottoa piipiiriltä
10.09.2019Uudenlainen pinnoite litium-metalli akuille
09.09.2019Uusi eristetekniikka pienemmille siruille
06.09.2019Hiilinanoputkia ja grafeenia
05.09.2019Nikkelioksidistako suprajohde?
04.09.2019Metamateriaaleja ja magnoniikkaa
03.09.2019Gallium-oksidi tehotransistoreita ennätysarvoilla
02.09.2019Muutos magneetissa itsessään
30.08.2019Transistori pellavalangasta
29.08.2019Robotti ottaa ajotarkkuuden hallintaansa

Näytä lisää »