Spinvirta välittää käyttövoimaa

01.08.2019

Japan-mekaanista-varahtelya-elektronien-spineilla-300-t.jpgUlokkeen sisältävä rakenne koostuu Y3Fe5O12:sta (YIG), joka on liitetty YIG-kalvon reunaan ja lämmittimeen. Lämmittimeen syötetty sähkövirta tuottaa lämpövirran, joka edelleen luo spinaallon (magnon) kertymisen YIG-kalvon pinnalle ja pohjalle. Kertymä injektoi spinvirtaa YIG-ulokkeeseen ja siitä edelleen mekaanista voimaa Spin-Seebeck vaikutuksen kautta.

Mekaaninen värähtely, joka syntyy elektronin spineistä, on uusi tapa tuottaa voimaa mikromekaniikan käyttöön.

Mikromekaaniset rakenne-elementit ovat välttämättömiä komponentteja monissa nykyaikaisissa sähkölaitteissa, mutta niiden käyttö edellyttää sähkövirtaa.

Näiden elementtien johdottaminen on yhä vaikeampaa, kun niiden rakenteita tehdään pienempiin mittoihin. Ongelman ratkaistakseen japanilaiset tutkijat osoittivat uuden tavan tuottaa voimaa ajamaan mikromekaniikkaa spinvirran avulla.

Spinvirta on elektronin kulmamomentin virtaus aineissa. Spinvirtaa on käytetty uutena informaation kantaja spintroniikan yhteydessä, kuten kiintolevyasemat (HDD) ja magneettinen Random-Access Memory (MRAM). Näissä sovelluksissa spinvirran injektointi voi ohjata mikromagneettien orientaatiota magneettisen vääntömomentin avulla.

Kun otetaan huomioon spinvirran kulmamomentin luonne, mitä tapahtuisi, kun spinvirta injektoidaan mekaaniseen esineeseen? Injektoitava ylenmääräinen kulmamomentti saattaa aiheuttaa siihen mekaanisen momentin. Tämä on ajatus.

Tässä tutkimuksessa tutkijat valmistivat mikroulokerakenteen magneettisesta eristeestä yttrium-rauta-granaatista (YIG:Y3Fe5O12). Metallinen ohut lanka laitettiin ulokkeen juurelle lämmittimeksi. Kun langassa kulkee sähkövirta, lanka toimii spinvirran generaattorina Spin Seebeck -vaikutuksen avulla ja spinvirta etenee mikroulokkeeseen.

Tutkijat mittasivat ulokkeen värähtelyä samalla, kun ne injektoivat spinvirtaa, joka oli moduloitu lähelle mikroulokkeen resonanssitaajuutta. Mittaus vahvisti, että spinvirran injektio sopivalla spinorientaatiolla voi herättää ulokkeeseen värinää.

"Tämä mikro-koneiden käyttömekanismi ei vaadi sähköjohtoa." ERATO Saitoh Spin Quantum Rectification projectin tutkija Kazuya Harii toteaa. "Tämä mekanismi soveltuu kaikkiin mekaanisiin esineisiin mikro- ja nanomittakaavassa."

Japanilainen ERATO Spin Quantum Rectification -tutkimusohjelma on erikoistunut spinin vähemmän tunnettuihin ominaisuuksiin.

Vuonna 2016 sen puitteissa toteutettiin Spin Peltier -vaikutuksen lämpökuvaus jossa todettiin ilmiön vaikuttavuus suuremmaksi kuin aiemmin oli oletettu.

Spinvirran tutkimus toi esiin myös Spin Seebeck -vaikutuksen, joka nyt esitellyllä tutkimuksella osoitettiin käytännölliseksi käyttövoiman siirtotavaksi

Spin Seebeck Effect osoittaa, että jopa termisesti aktivoitu satunnainen impulssi voi kiihdyttää spinin presessiota spinvirran generoimiseksi ja tuottaen siten sähköjännitettä.

Tämä on mahdollista, johtuen spinin eräästä luontaisesta ominaisuudesta: "ajan käänteissymmetrian rikkomisesta". Eli spin voi kiertää vain yhteen suuntaa ja tämän ominaisuuden vuoksi jopa satunnainen impulssi voi aktivoida yksisuuntaisen spin presession hyvin suunnitelluissa lämpöolosuhteissa.

Nyt tutkimusohjelmassa keskitytäänkin kehittämään mekanismeihin, joilla voi generoida käyttökelpoista energiaa eli toteuttaa spinperustaista energian keruuta.

Aiheesta aiemmin:

Spinaallot hyötykäyttöön

Spintroniikkaa teoretisoiden ja hyödyntäen

13.09.2019Tehokkaampaa sähköpolttoaineiden tuotantoa
12.09.2019Ensimmäinen monimutkainen kvanttiteleportaatio
11.09.2019Energian talteenottoa piipiiriltä
10.09.2019Uudenlainen pinnoite litium-metalli akuille
09.09.2019Uusi eristetekniikka pienemmille siruille
06.09.2019Hiilinanoputkia ja grafeenia
05.09.2019Nikkelioksidistako suprajohde?
04.09.2019Metamateriaaleja ja magnoniikkaa
03.09.2019Gallium-oksidi tehotransistoreita ennätysarvoilla
02.09.2019Muutos magneetissa itsessään
30.08.2019Transistori pellavalangasta
29.08.2019Robotti ottaa ajotarkkuuden hallintaansa
28.08.2019Enemmän irti MEMS-tekniikasta
27.08.2019Ensimmäinen havainto eksitonisesta eristeestä
26.08.2019Opto-elektroninen siru jäljittelee hermosoluja
23.08.2019Valoa vangiten ja suunnaten
22.08.2019Navigoi ja paikallista kuin pöllö
21.08.2019Uusia puolijohteita tehoelektroniikkaan
20.08.2019Biohajoavia mikroresonaattoreita
19.08.2019Uutta tekniikkaa aurinkosähkölle
16.08.2019E-tekstiilejä ja metamateriaaleja
15.08.2019Valoa nanopiireille
14.08.2019Tehokkaampia kvanttiantureita
13.08.2019Tsunami mikropiirillä
12.08.2019Tekniikkaa kuudennen sukupolven verkoille
09.08.2019Kvanttimikrofonista kvanttitietokoneeseen
08.08.2019Paksummat OLEDit parantavat näyttötekniikkaa
07.08.2019Älylasi, joka ei tarvitse sähköä
06.08.2019Sähköä ruosteen avulla
05.08.2019Erittäin ohuita transistoreita
01.08.2019Spinvirta välittää käyttövoimaa
26.07.2019Dramaattista lisäystä aurinkokennoihin
19.07.2019Luminenssilamput kehittyvät
12.07.2019Atomista audiotallennusta
04.07.2019Valosähköisiä nanoputkia
03.07.2019Informaation teleporttausta timantissa
02.07.2019Orgaanisia katodeja tehokkaille akuille
28.06.2019Spintroniikkaa ja muistitekniikkaa
27.06.2019Edistysaskeleita kvanttitietotekniikalle
26.06.2019Oksidimateriaalit kaupallistuvat
25.06.2019Lasertekniikalla grafeenia hyötykäyttöön
24.06.2019Ionitekniikkaa kondensaattoreihin
20.06.2019Tehokkaampia tehopiiritekniikoita
19.06.2019Uutta tekniikkaa 2D-materiaalin venytyksellä
18.06.2019Bioparisto IoDT-sovelluksille
17.06.2019Uusia ovia nanofotoniikan maailmaan
14.06.2019Biologian avulla sähkö varastoon ja hiili kiertoon
13.06.2019Orgaaniset laserdiodit unelmasta todellisuuteen
12.06.2019Uusia ominaisuuksia elektroniikalle
11.06.2019Uusi laite pakkaa enemmän valokuituun
10.06.2019Tutkijat yrittävät luoda ihmisen kaltaista koneajattelua
07.06.2019Vaihtoehtoja elektroniikan vauhdittamiseen
06.06.2019Hiiliseostus muuttaa puolijohtavaa 2D-materiaalia
05.06.2019Hämähäkin aisteja autonomisille koneille
04.06.2019Elektronin geometria määritelty
03.06.2019Fyysikot löytäneet uudenlaisia spin-aaltoja
30.05.2019Pesunkestävää kangaselektroniikkaa
29.05.2019Uusia ratkaisuja kaoottisille värähtelypiireille
27.05.2019Magneettista oppimista tietojenkäsittelyyn
24.05.2019Auttaa robotteja muistamaan
23.05.2019Ultrapuhdas valmistustapa 2D-transistoreille
22.05.2019Erittäin nopeita magneettisia muisteja
21.05.2019Happea akkujen kehitykseen
20.05.2019Neulanreiät hologrammeja tuottamaan
17.05.2019Lasketaan nopeammin kvasihiukkasilla
16.05.2019Kondensaattoreita tulostamalla
15.05.2019Kvanttitietotekniikkaa grafeenin ja piin avulla
14.05.2019Suurtaajuussiirto tehostuu grafeenilla
13.05.2019Aivomaista tietotekniikkaa
11.05.2019Kvanttitason mittauksia
09.05.2019Tehokkaampia muistimateriaaleja
08.05.2019Lämpösähköä spinien tasolta
07.05.2019Suurin ja nopein optinen kytkinpiiri
06.05.2019Tehokkaita lämpöjohteita nanoelektroniikalle
03.05.2019Monenlaista ledien värien hallintaa
02.05.2019Staattinen negatiivinen kondensaattori
30.04.2019Kompaktia pitkäaaltoista viestintää
29.04.2019Nanoklustereista puolijohteita
26.04.2019Uudenlainen spintransistori
25.04.2019Aurinkoa seuraten
24.04.2019Kvanttimateriaali aivojen kaveriksi
23.04.2019Uusia rakenteita Litium-ioni akuille
18.04.2019Spinaaltoja nanoelektroniikkaan
17.04.2019Huonelämpötilassa toimivia keinotekoisia atomeja
16.04.2019Uusi ihmemateriaali: yksittäisiä 2D-fosforeeninauhoja
15.04.2019Eksoottisia kvanttivaikutuksia
12.04.2019Fononeja suunnaten ja laseroiden
11.04.2019Kuparipohjainen vaihtoehto kullalle
09.04.2019Vanhassa vara parempi
08.04.2019Mainostilan esittely
08.04.2019Tehokkaita ledejä nanolangasta
05.04.2019Nanogeneraattori kankaalle 3D-tulostuksella
03.04.2019Topologiaa valoaalloille
02.04.2019Kolme mittausta yhdellä selluanturilla
01.04.2019Monipuolisia orgaanisia transistoreita
29.03.2019Kvanttisimulointia valolla
28.03.2019Sähköä syöviä mikrobeja
27.03.2019Proteiini tarjoaa vaihtoehtoja ionijohteille
26.03.2019Metamateriaali ratkoo yhtälöitä
25.03.2019Molekyylimoottorit toimivat yhdessä

Näytä lisää »