Alumiini kiinnostaa energia-alaa

23.08.2021

MIT-vetya-alumiiniromusta-GMG_alumiini-ioni-akku-250-t.jpgAlumiinilla vaikuttaa olevan vahva rooli tulevaisuuden akuissa mutta myös vedyn tuotannossa.

Grafeenitekniikkaan erikoistunut Graphene Manufacturing Group (GMG) väittää, että alumiini-ioniakut voivat latautua 60 kertaa nopeammin kuin tavalliset litiumioniakut.

Australiassa toimiva GMG kertoi äskettäin Queenslandin yliopiston (UQ) kanssa tehdystä tutkimussopimuksesta, joka johtaa GMG:n valmistamaan ja kaupallistamaan grafeeni-alumiini-ioniakkuja, joissa hyödynnetään yliopiston tutkijoiden kehittämää tekniikkaa.

GMG:n grafeeni-alumiini-ioniakut voivat kantaa kolme kertaa enemmän energiaa kuin muut alumiinipohjaiset akkukennot. Vertaisarvioitu testaus on osoittanut akussa 149 mAh g−1 suorituskyvyn 5 Ag-1.

GMG:n tulevat akut koostuvat alumiinifoliosta, alumiinikloridista, ionisesta nesteestä ja ureasta. Näiden materiaalien etu litiumiin nähden on niiden stabiilisuus. Nämä tuottavat turvallisemman akun, jolla on nopeampi latausaika ja tiheämpi energian varastointikapasiteetti.

Alumiini-ioniakut latautuvat nopeammin kuin litiumioniakut koska ne vaihtavat kolme elektronia ionia kohden ladattaessa ja palatessaan akun negatiiviseen elektrodiin. Litium-ionit voivat liikkua vain yksi kerrallaan akun läpi ladattaessa.

Alumiini-ioneilla ei myöskään ole ampeerista ylärajaa, mikä tarkoittaa, että ne eivät ylikuumennu spontaanisti eivätkä vaadi ylimääräistä jäähdytystä toimiakseen turvallisesti. Esimerkiksi sähköautojen litiumioniakkupaketit sisältävät noin 20 % jäähdytyskomponentteja.

Nanoteknologian menetelmillä akku tuotetaan lisäämällä alumiinin atomeja grafeenitasoissa olevien pienien reikien sisään. Tekniikka käsittää atomimittaisten reikien poraamisen grafeeniin ja alumiinin varastoinnin niiden sisään.

Maailman pyrkiessä irtautumaan fossiilisista polttoaineista puhtaalla vetypolttoaineella voisi olla laajempi rooli liikenteen, teollisuuden, rakennusten ja sähköntuotannon aloilla. Vaikka vedyn käyttö ei aiheuta hiilipäästöjä, sen tuottaminen fossiilisiin polttoaineisiin perustuvilla prosesseilla aiheuttaa.

Yksi vaihtoehto vedyn tuottamiseksi voisi olla alumiinin reagointi veden kanssa. Alumiinimetalli reagoi helposti veden kanssa huoneenlämmössä muodostaen alumiinihydroksidia ja vetyä. Tätä reaktiota ei tyypillisesti tapahdu, koska alumiini pinnoittuu luonnollisesti oksidikerroksella, mikä estää sitä joutumasta suoraan kosketukseen veden kanssa.

"Pohjimmiltaan alumiinista tulee mekanismi vedyn varastoimiseksi - ja erittäin tehokas", sanoo MIT:n koneenrakennuksen professoriDouglas P. Hart. "Käyttämällä alumiinia lähteenä voimme "varastoida" vetyä tiheydellä, joka on kymmenen kertaa suurempi kuin jos varastoimme sitä painekaasuna."

Alumiini-vesi -reaktion käyttäminen vedyn tuottamiseen ei aiheuta kasvihuonekaasupäästöjä ja kuljetusongelma ratkeaa sillä, että vettä on laajalti käytettävissä. Samoin käyttämällä paikallisesti helposti siirrettävää romualumiinia mikä samalla keventää puhtaan alumiinin louhinnan ja tuottamisen energiaintensiivisyyden ongelmaa

Nykytutkimus paneutuukin siihen, mikä on paras tapa estää oksidikerroksen tarttuminen alumiinipintaan ja miten alumiiniromun seosaineet vaikuttavat vedyn kokonaismäärään syntyyn ja kuinka nopeasti sitä syntyy?

MIT:n tutkijat ovat nyt osoittaneet kaksi käytännöllistä tapaa säätää vedyn reaktionopeutta: lisäämällä ja hyödyntämällä tiettyjä romualumiiniin lisäaineita ja manipuloimalla alumiinirakeiden kokoa.

Aiheista aiemmin:

Vetyä auringonvalosta

Uudet materiaalit kestäville ja edullisille akuille

03.12.2021Kotimaista kvanttitietotekniikkaa
02.12.2021Dynaamisesti ohjelmoitava transistori
01.12.2021Yksinkertaisempi suunnitelma kvanttitietokoneille
30.11.2021Näkyvän valon modulointi sirutasolle
29.11.2021Fyysistä salaustekniikkaa nopeille langattomille
27.11.2021Kvanttipisteledi taipuu kuin paperi
26.11.2021Ultranopea akkujen lataus uudella anodimateriaalilla
25.11.2021Nanoantenni avittaa kvanttiviestintää
24.11.2021Vihreää vetyä edullisemmin
23.11.2021Astrosyytit tekoälyn tehostajiksi
22.11.2021Nanoresonaattoreita 3D-tulostuksella
20.11.2021Solut laskevat ja peptideistä antureita
19.11.2021Topologialla kohti terahertsitaajuuksia
18.11.2021Suprajohtavia johteita ja koneita
17.11.2021Kohti tehokkaampaa kvanttilaskentaa
16.11.2021Perovskiitista on moneksi
15.11.2021Yliääniä ja suprajohtavuutta grafeenissa
13.11.2021Energian varastointi kasvien elektronisiin juuriin
12.11.2021Uutta väriä ledeihin
11.11.2021Fotonioperaatiot sopivat yhä paremmin sirulle
10.11.2021Kohti hologarfista videokonferenssia
09.11.2021Spin-kubitin hallintaa
08.11.2021Tekoälyä tehokkaammin
06.11.2021Navigointia ilman GPS:ää
05.11.2021Grafeenia doupaten
04.11.2021Valon hallintaa mustalla fosforilla
03.11.2021Yleiskäyttöinen nopea virheenkorjaus
02.11.2021Sellulla ja kuparilla parempia ja turvallisempia akkuja
01.11.2021Kohinan leikkausta ja hybridikäyttöä kvanttilaskennalle
30.10.2021Anturi SARS-CoV-2-proteiineille
29.10.2021Parveilevaa ja loikkivaa robottitekniikkaa
28.10.2021Räjähtävää sähkövoimaa
27.10.2021Nanomittakaavan 3D-rakenteita
26.10.2021Germaniumia kvanttielektroniikkaan
25.10.2021Jäähdyttää radioaaltoja kvanttitilaan
22.10.2021Fotoniikkaa topologisesti
21.10.2021Metamateriaali ohjaa valon korrelaatioita
20.10.2021Elektronien tanssia, lomittumista ja jäätiköitä
19.10.2021Molekyyli kerrallaan
18.10.2021Sähköisesti ohjattua magnetismia
15.10.2021Topologinen fotoni-fononi -läpimurto
14.10.2021Valolla hallittavia meta-ajoneuvoja
12.10.2021Lennokkiantennit EMF-ongelmien ratkaisijana
11.10.2021Tuulen lennättämä mikrosiruanturi
08.10.2021Katalyyttejä yhdellä atomilla ja ferrosähköllä
07.10.2021Ihmiseen integroitavia elektroniikan polymeerejä
06.10.2021Twist, twist, twist
05.10.2021Laskentaa ilman digitaaliprosessoria
04.10.2021Superioninen johde ja muita akku-uutisia
01.10.2021Lämmönhallintaa nanoelektroniikalle
30.09.2021Vuotaa ja ei vuoda
29.09.2021Kohti ihon kaltaista elektroniikkaa
28.09.2021Uusia ja ikivanhoja ideoita mikrolasereille
27.09.2021Uusia optisen tiedonsiirron ratkaisuja
24.09.2021Hehkuvien kasvien seuraava sukupolvi
23.09.2021Mikroaaltojen fotoneja kvanttitietokoneisiin
22.09.2021Osittaisdifferentaaleja ja Hamiltoneita ratkaisemaan
21.09.2021Etsausta spintroniikalle ja laaksotroniikalle
20.09.2021Huonelämpötilainen spintransistori
17.09.2021Kiertymiä ja laaksoja
16.09.2021Vihreää polttoainetuottoa kehittäen
15.09.2021Topologiaa ja magneettisuutta
14.09.2021Kvanttianturit ohenevat
13.09.2021Nanokamera seuraa kemiallisia reaktioita
10.09.2021Komplementaarista galliumnitridielektroniikkaa
08.09.2021Käytännöllisiä lämpösähkömateriaaleja
06.09.2021Ionit vauhdikkaina erittäin ohuissa savissa
03.09.2021Akun anodi ja katodi osana kotelointia
01.09.2021Nanomaailman kvanttiominaisuuksia
30.08.2021Perovskiitillä vihreämpiä transistoreita
27.08.2021Ferrosähköistä energian tuottoa
25.08.2021Kvanttiturvallinen viestintä ilman avainten jakelua
23.08.2021Alumiini kiinnostaa energia-alaa
20.08.2021Kvanttipalapelin puuttuvia paloja
18.08.2021Muistitekniikalle uusia ja vanhoja konsteja
16.08.2021Nanoteknistä pienenergian keruuta
13.08.2021Ennätysohuet magneetit hallintaan
11.08.2021Portti auki seuraavan sukupolven tietojenkäsittelylle
09.08.2021Epätavallinen suprajohde kvanttilaskennan alustaksi?
05.08.2021Aurinkokennoja siemenistä kasvattaen
04.08.2021Grafeenikamera kuvaa sydämen sähköistä toimintaa
02.08.2021Laser ja mikrokampa samalle sirulle
30.07.2021Australialaistutkijat kehittivät kvanttimikroskoopin
29.07.2021Fotonit ja magnonit kaveraavat
19.07.2021Kvanttiaskel lämpökytkimelle
08.07.2021Lämpöaaltoja puolijohdemateriaalissa
25.06.2021Kvanttipisteet voivat "puhua" keskenään
24.06.2021Metamateriaaleja tulostustekniikalla
23.06.2021Kohti topologisia suprajohteita
22.06.2021Uusia ominaisuuksia moiré-superhiloissa
21.06.2021Valoa ja elektroneja antiferromagneeteille
17.06.2021Uusia materiaalimuotoja elektroniikalle
16.06.2021Kvanttiviestintää helposti ja pitkille matkoille
15.06.2021Elektronisia järjestelmiä nanovihreästä materiaalista
14.06.2021Atominen katse litiumakkuihin
12.06.2021Kubitteja hiilinanoputkista
11.06.2021RAM:ina ja ROM:ina toimivia sirukomponentteja
10.06.2021Kuinka revontulet syntyvät?
09.06.2021Radiotaajuisen signaalin prosessointi akustiseksi
08.06.2021Magnetosähköä ja magnetostriktiota

Näytä lisää »