Kvanttitietokoneet töihin

28.08.2018

D-Wave-kvanttisimulointia-topologisista-QOQII-250.jpgKvanttitietokoneilla on jo ajettu ensimmäisiä niille tässä kehitysvaiheessa sopivia tehtäviä.

Kvanttimulaattoreilla on jo tutkittu elektronien ja fononien välistä vuorovaikutuksia ja kesällä Oak Ridge National Laboratoryn (ONRL) tutkijat simuloivat atomiydintä kvanttikonetta käyttäen.

Yksinkertainen mutta realistinen ydinfysiikan ongelma, kuten deuteronin sitovan energian laskeminen, voidaan toteuttaa kvanttilaskennan avulla nykyisissä kvanttilaitteissa. Deuteron on deuteriumin eli raskaan vedyn ydin. 

Toisaalla Itävaltalaisen Quantum Optics and Quantum Information in Innsbruckin (IQOQI) tutkijat simuloivat molekyylivedyn ja litiumhydridin energiasidoksia.

Näin saavutettiin maailman ensimmäisen monikubittinen demonstraatio kvanttikemian laskennasta, joka on tehty loukkuun jääneiden ionien järjestelmällä, joka on yksi johtavista rakenneideoista kilpailussa kehittää universaali kvanttitietokone.

IQOQI:n tiimi käytti vain neljää kubittia 20-kubittisessa laitteessa algoritmien ajoon, joilla simuloitiin molekyylisen vedyn ja litiumhydridin energiasidoksia. Nämä suhteellisen yksinkertaiset molekyylit ovat hyvin ymmärrettyjä ja voidaan simuloida klassisia tietokoneita käyttäen. Näin voidaan kvanttilaskennan tulokset tarkistaa.

Äskettäin omalla annealing-tyyppisellä 2048-kubittisella laitteistollaan D-Wave Systems on tehnyt peräti kaksi merkittävää kvanttisimulointia.

Heinäkuussa D-Wave kertoi kuinka yhtiön D-Wave 2000Q -kvanttitietokonetta käytettiin ennustamaan faasisiirtymiä tietyssä kvanttimekaanisessa järjestelmässä, jota kutsutaan poikittaiskenttä Ising-malliksi.

D-Wave -järjestelmä pystyy ohjelmoimaan yksittäiset vuorovaikutussuhteet spinien välillä, kun aikaisempi toiminta muiden kvanttilaitteiden kanssa rajoittui tutkimusjärjestelmiin, joissa näitä vuorovaikutuksia ei voitu ohjelmoida erikseen.

Elokuussa D-Wave Systems julkaisi virstanpylvään tutkimuksessa, joka osoitti topologisen faasisiirtymän käyttäen 2048 kubitin hehkutuskuvanttikonettaan.

Tämä materiaalien monimutkainen kvanttisimulointi on merkittävä askel kohti vähentää aikaa vievän ja kalliin fyysisen tutkimuksen ja kehityksen tarvetta.

Tutkimusjulkaisun otsikkona on "Topologisten ilmiöiden havainnointi ohjelmoitavalla 1800 kubitin hilalla". Se julkaistiin tiedelehti Naturessa.

Tekijöiden mukaan työ on merkittävä edistysaskel alalla ja osoittaa että täysin ohjelmoitavaa D-Wave-kvanttitietokonetta voidaan käyttää tarkan kvanttijärjestelmän simulaattorina laajassa mittakaavassa.

Tässä työssä käytettävillä menetelmillä voi olla laajoja vaikutuksia uusien materiaalien kehittämiseen, realisoiden Richard Feynmanin alkuperäisen vision kvantti-simulaattorista.

Yhtiön koneilla tehdyt kaksi tutkimustyötä osoittavat yhdessä D-Wave-kvanttikoneen joustavuutta ja monipuolisuutta materiaalien kvantti simuloinnissa muiden tehtävien lisäksi, kuten optimoinnin ja konekielisen oppimisen kehuu yhtiö saavutuksiaan.

Kiinteän aineen tutkimuksissa topologia on varsin nuori ala. Aiheesta myönnettiin fysiikan Nobel-palkinto vuonna 2016.

Tutkijoiden mukaan työ antaa toivoa, että tulevat kvanttisimulaattorit pystyvät tutkimaan monimutkaisempia ja huonosti ymmärrettyjä järjestelmiä niin, että kvantitatiivisten yksityiskohtien simulointituloksiin voidaan luottaa fyysisen järjestelmän mallina.

"Nature -lehdessä kuvattu työ on maamerkki kvanttilaskennan alalla: ensimmäistä kertaa teoreettisesti ennustettu aineen tila toteutettiin kvantti-simuloinnissa ennen kuin se osoitettiin todellisessa magneettisessa materiaalissa", toteaa tohtori Mohammad Amin, työn keskeinen tutkija D-Wave Systemsillä.

"Tämä on merkittävä askel kohti kvanttisimulaation tavoitteen saavuttamista. Sellainen mahdollistaa materiaalisten ominaisuuksien tutkimisen ennen niiden tekemistä laboratoriossa, prosessi, joka voi olla nykyään erittäin kallis ja aikaa vievä."

Aiheesta aiemmin:

Kvanttitietokoneita kaupan

21.12.2023Yksittäisestä 2D-materiaalista suprajohtava liitos
20.12.2023Nanoresonaattorit avaavat tietä kvanttiverkoille
19.12.2023Metapinta-antenni 6G:lle ja meta-atomeja
18.12.2023Atomintarkkaa 2D-materiaalien integrointia
16.12.2023Kvanttiakuissa rikotaan kausaliteetti
15.12.2023Hierarkkinen generatiivinen mallinnus autonomisille roboteille
14.12.2023Uusi näkemys moniarvoisten akkujen suunnitteluun
13.12.2023Optisella langattomalla ei ehkä enää ole esteitä
13.12.2023Fyysikot kvanttilomittavat yksittäisiä molekyylejä
12.12.2023Edullista tribosähköä ja aurinkokenno puumateriaalista
08.12.20232D-materiaaleista 3D-elektroniikkaa tekoälylaitteistoihin
07.12.2023Fotonikomponentteja RF-signaalin käsittelyyn
06.12.2023Elektromagnoniikasta uusi tiedonkäsittelyn alusta
05.12.2023Uusi alusta kvantti-informaation käsittelyyn
04.12.2023Lämpöä voidaan käyttää laskentaan
01.12.2023Askel biologian ja mikroelektroniikan integroinnille
30.11.2023Josephson-liitosten käyttö supravirran ohjaamiseen
29.11.2023Mikrotekniikkaa ja molekyylikemiaa aurinkokennoille
28.11.2023Materiaalien kehittelyä koneoppisella
27.11.2023Kaksiulotteisia magneetteja tietotekniikalle
25.11.2023Uusi jäähdytysmekanismi jääkaapeille ja jäähdytyslaitteille
24.11.2023Vangita elektroneja 3D-kiteeseen
23.11.2023Pikofotoniikan synty: Kohti aikakidemateriaaleja
22.11.2023Veden ja ilman välinen akustinen viestintä
21.11.2023Uusia kubittiratkaisuja
20.11.2023Erittäin nopeat laserit erittäin pienillä siruilla
18.11.2023Grafeenia, fotosynteesiä ja tekoälyä vihreään energiantuotantoon
17.11.2023Parempaa energiatehokkuutta tietojenkäsittelyyn
16.11.2023Kommunikointia tyhjyyden kanssa
15.11.2023Metamolekyylisen metamateriaalin valmistus
14.11.2023Läpi ahtaankin raon
13.11.2023Outo magneettinen materiaali voi tehdä laskennasta energiatehokasta
11.11.2023Sähköä molekyylien ja ionien tasolta
11.11.2023Neuroverkkoja optisesti ja kvanttihybridinä
09.11.2023Viisi kerrosta grafeenia
08.11.2023Lämmönsiirron hallintaa transistorilla
07.11.2023Metamateriaali yhdistää katkenneet hermot
06.11.2023Valoa valolla ohjaten
04.11.2023Hiilidioksidia polttoaineeksi tehokkaasti
03.11.20233D-tulostustekniikkaa kvanttiantureille
03.11.2023Magnetismia ei-magneettisissa materiaaleissa
02.11.2023Energiatehokas tekoälysiru
01.11.2023Ferrosähköisyyttä piin kanssa ja yhdellä alkuaineella
31.10.2023Magneettisten aaltojen hallinta suprajohteilla
30.10.2023Vakautta ja tehokkuutta perovskiittiaurinkokennoille
28.10.20233D-tulostettu reaktorisydän aurinkopolttoaineille
27.10.2023Tekoälyä kolmiulotteisella datalla
26.10.2023Kvantti-ilmiön sähköinen ohjaus
25.10.2023Verkkoliitäntä kvanttitietokoneille ja radiospektrin kattava ilmaisin
24.10.2023Fotonikiteet taivuttavat valoa aivan kuin painovoima
23.10.2023Nanorakenteet tehostavat litium-rikki akkuja
21.10.2023Vetyä tankaten
20.10.2023Harppaus hiilinanoputkia pidemmälle
19.10.2023Suprajohtava niobium-aaltoputki
19.10.2023Ruoste ja topologia tehostavat magnetismia
17.10.2023Virheiden osoittaminen tehostaa kvanttilaskentaa
16.10.2023Pyrosähköä viruksista
16.10.2023Uusi kubittialusta luodaan atomi kerrallaan
12.10.2023Kvasikiteitä ja ultralaajakaistaista kuvausta
11.10.2023Kontakteja ja seostusta grafeeninanonauhoihin
10.10.2023Magneettinen heterorakenne nopeuttaa tietotekniikkaa
09.10.2023Mullistava väriteknologia ja aurinkoenergia
06.10.2023Timanteista kvanttisimulaattoreita
05.10.2023Kultaa ja perovskiittiä
04.10.2023Tehokkaampaa koulutusta tekoälylle
03.10.2023Lämpötilakuvausta aineen sisältä
02.10.2023Femtosekunnin laseri lasista
29.09.2023Tavoitteena parempia kubitteja
28.09.2023Suola ja kulta tuottavat sähköä
27.09.2023Laaksotroniikka lämpenee
26.09.2023Tekoälyä monisensorisella integroidulla neuronilla
25.09.2023Magneetteja huonelämpöiseen kvanttilaskentaan
23.09.2023Lupaavia vedyn tuotannon tapoja
23.09.2023Kvanttipotentiaalin vapauttaminen monipuolisilla kvanttitiloilla
21.09.2023Terahertsiaaltoja helpommin
20.09.2023Espoosta voi ostaa kvanttitietokoneen
19.09.2023Kvanttianturien tarkkuutta voi edelleen parantaa
18.09.2023Kaksiulotteisia fettejä piikiekolle
16.09.2023Grafeenia, vihreää energiaa ja materiaaleja
15.09.2023Infrapunavaloa kvanttipisteistä
14.09.2023Kohti täydellisiä optisia resonaattoreita
13.09.2023Pidemmän kantaman vedenalaista viestintää
12.09.2023Pisara-akku tasoittaa tietä biointegroinnille
11.09.2023Atomisen tarkkoja antikvanttipisteitä
08.09.2023Outo metalli on nyt vähemmän outo
07.09.2023Yhtä aikaa analoginen ja digitaalinen
06.09.2023Fotoni kuljettaa ja koodaa kvantti-informaatiota
05.09.2023Parempi kyberturvallisuus uudella materiaalilla
04.09.2023Miten valo toimii? Kysy mekaanikolta
01.09.2023Spinin kytkentää kvanttimateriaalissa huonelämpötilassa
31.08.2023Kuditit antavat välähdyksen kvanttitulevaisuudesta
30.08.2023Ledejä piirtäen ja vaihtoehto orgaanisille ledeille
29.08.2023Ioniansoja, fermionprosessori ja kvanttihybridimekaniikkaa
28.08.2023Grafeenin ominaisuuksia grafiittiin
26.08.2023Tehokas fotoreaktori ja kestävä polttokennoarkkitehtuuri
25.08.2023Pienenergian keruuta grafeenin värähtelystä
24.08.2023Valoa magneetin sisään
23.08.2023Hiilipohjaista kvanttitekniikkaa
22.08.2023Kohti vikasietoisia kubitteja
21.08.2023Kaksiulotteinen aaltojohde valolle

Näytä lisää »