Integroidun kvanttipiirin toiminta mahdollista

02.11.2018

UNSW-integroitu-kvanttisiru-operaatiot-mahdollisia-300-t.jpgUNSW:ssä kokeita tehnyt Dzurakin tiimi. Vasemmalta oikealle: Tohtori Bas Hensen, professori Dzurak, tohtori Kok Wai Chan ja tohtoriopiskelija Michael Fogarty.

Australialaisen UNSW Sydney -yliopiston tutkijat ovat yhdistäneet kaksi keskeistä kvanttitekniikkaa integroidussa piirissä ensimmäistä kertaa, vahvistaen toiveettaan piin käyttämisestä kvanttilaskentaan.

Kvanttitietokoneet vaativat miljoonia kubitteja integroidulla tavalla toimien ja suunniteltuna korjaamaan virheitä, joita väistämättä esiintyy näissä herkissä kvanttijärjestelmissä.

Nyt UNSW:n tutkimusryhmä on kokeellisesti realisoinut näiden ominaisuuksien ratkaisevan yhdistelmän piisirulla, mikä tuo yleiskäyttöisen kvanttitietokoneen unelman lähemmäksi todellisuutta.

He ovat demonstroineet piille integroitua kubittien alustaa, joka yhdistää sekä yhden spinin osoitettavuuden - kyky kirjoittaa informaatiota yhdelle spin kubitille häiritsemättä naapureitaan - että kubitin luennan prosessin, joka on elintärkeä kvanttivirheen korjaamiseksi.

Tutkijatiimiä johtaa UNSW Sydneyn ja CQC2T-yksikön ohjelmajohtaja professori Andrew Dzurak. Viime vuonna Dzurak ja kollegat julkaisivat siruarkkitehtuurin suunnitelman, jonka toivotaan mahdollistavan kvanttilaskennan suorittamisen käyttäen pii CMOS-komponentteja.

Uudessa tutkimuksessa tiimi yhdistää kaksi keskeistä kvanttitekniikkaa ensimmäistä kertaa vahvistaen lähestymistapansa lupauksen.

Dzurakin tiimi on jo aiemmin osoittanut (2014), että piille integroitu kubittien alusta voi toimia yhden spin osoitettavuudella - kyky pyöräyttää yhtä spiniä naapuria häiritsemättä.

Nyt he ovat osoittaneet, että he voivat yhdistää tämän erikoistyyppiseen kvanttiluennan prosessiin, joka tunnetaan nimellä Pauli spin saarto. Se on tärkeä vaatimus kvanttivirheenkorjauskoodeille. Tämä uusi yhdistelmä kubitin luennan ja hallinnan tekniikoita ovat keskeinen piirre heidän kvanttisirun suunnitelmassa.

"Olemme osoittaneet kyvyn tehdä Pauli spin luennan piille kootulla kubittipiirillämme, mutta ensimmäistä kertaa olemme myös yhdistäneet sen spin-resonanssin kanssa spinin hallitsemiseksi", Dzurak sanoo.

"Tämä on tärkeä virstanpylväs meille kohti kvanttivirheenkorjauksen suorittamista spin-kubiteilla, mikä on oleellista kaikille universaaliselle kvanttikoneelle."

Julkaisun johtava kirjoittaja Michael Fogarty, toteaa: "Kvanttitason virheenkorjaus on avainvaatimus suuren mittakaavan hyödyllisen kvanttilaskennan luomisessa, koska kaikki kubitit ovat hauraita ja virheitä on korjattava, kun niitä ilmestyy."

Mutta Fogarty toteaa myös, että tämä "luo huomattavia vaatimuksia niiden fyysisten kubittien määrässä, jotka tarvitaan järjestelmän toimimiseksi".

Tähän Dzurak jatkaa: "Käyttämällä pii CMOS -tekniikkaa meillä on ihanteellinen alusta, jonka voimme skaalata miljoonille kubiteille, joita tarvitsemme ja meidän viimeaikaiset tulokset tarjoavat meille välineet saavuttaa spinkubitin virheenkorjaus lähitulevaisuudessa.

"Se on toinen vahvistus siitä, että olemme oikealla tiellä. Ja se osoittaa myös, että UNSW:ssä kehitetty arkkitehtuuri ei toistaiseksi ole osoittanut mitään esteitä toimivan kvanttikonepiirin kehittämiselle - ja mikä parasta, se voidaan valmistaa vakiintuneiden teollisuusprosessien ja komponenttien avulla,” iloitsevat tutkijat UNSW:n tiedotteessa.

UNSW-mol_freq_spect_artboard-300-t.jpgAiemmin kesällä UNSW:n tutkijat rakensivat erilaisista lähekkäin kootuista atomirakenteista kubitteja, joiden elektronien spiniä he onnistuivat virittämään mikroaalloilla resonanssiin yksittäin, niin, että ne eivät vaikuta toisiinsa.

Kuvassa on rakennetun molekyylin taajuusspektri. Kolme piikkiä edustavat kolmea erilaista spinin konfiguraatiota atomien ytimissä.

Näin voidaan luoda sisäänrakennettuja osoitteita, mikä tarjoaa merkittäviä etuja piikvanttikoneen rakentamiselle. Kubittien viritys ja yksittäinen ohjailu ovat välttämättömiä kvanttitietokoneen toiminnalle ja monimutkaisten laskelmien suorittamiseksi.

Aiheesta aiemmin:

Toimivia kubitteja piille

Piihin perustuvan kvanttitietokoneen suunnitelma

15.12.2023Hierarkkinen generatiivinen mallinnus autonomisille roboteille
14.12.2023Uusi näkemys moniarvoisten akkujen suunnitteluun
13.12.2023Optisella langattomalla ei ehkä enää ole esteitä
13.12.2023Fyysikot kvanttilomittavat yksittäisiä molekyylejä
12.12.2023Edullista tribosähköä ja aurinkokenno puumateriaalista
08.12.20232D-materiaaleista 3D-elektroniikkaa tekoälylaitteistoihin
07.12.2023Fotonikomponentteja RF-signaalin käsittelyyn
06.12.2023Elektromagnoniikasta uusi tiedonkäsittelyn alusta
05.12.2023Uusi alusta kvantti-informaation käsittelyyn
04.12.2023Lämpöä voidaan käyttää laskentaan
01.12.2023Askel biologian ja mikroelektroniikan integroinnille
30.11.2023Josephson-liitosten käyttö supravirran ohjaamiseen
29.11.2023Mikrotekniikkaa ja molekyylikemiaa aurinkokennoille
28.11.2023Materiaalien kehittelyä koneoppisella
27.11.2023Kaksiulotteisia magneetteja tietotekniikalle
25.11.2023Uusi jäähdytysmekanismi jääkaapeille ja jäähdytyslaitteille
24.11.2023Vangita elektroneja 3D-kiteeseen
23.11.2023Pikofotoniikan synty: Kohti aikakidemateriaaleja
22.11.2023Veden ja ilman välinen akustinen viestintä
21.11.2023Uusia kubittiratkaisuja
20.11.2023Erittäin nopeat laserit erittäin pienillä siruilla
18.11.2023Grafeenia, fotosynteesiä ja tekoälyä vihreään energiantuotantoon
17.11.2023Parempaa energiatehokkuutta tietojenkäsittelyyn
16.11.2023Kommunikointia tyhjyyden kanssa
15.11.2023Metamolekyylisen metamateriaalin valmistus
14.11.2023Läpi ahtaankin raon
13.11.2023Outo magneettinen materiaali voi tehdä laskennasta energiatehokasta
11.11.2023Sähköä molekyylien ja ionien tasolta
11.11.2023Neuroverkkoja optisesti ja kvanttihybridinä
09.11.2023Viisi kerrosta grafeenia
08.11.2023Lämmönsiirron hallintaa transistorilla
07.11.2023Metamateriaali yhdistää katkenneet hermot
06.11.2023Valoa valolla ohjaten
04.11.2023Hiilidioksidia polttoaineeksi tehokkaasti
03.11.20233D-tulostustekniikkaa kvanttiantureille
03.11.2023Magnetismia ei-magneettisissa materiaaleissa
02.11.2023Energiatehokas tekoälysiru
01.11.2023Ferrosähköisyyttä piin kanssa ja yhdellä alkuaineella
31.10.2023Magneettisten aaltojen hallinta suprajohteilla
30.10.2023Vakautta ja tehokkuutta perovskiittiaurinkokennoille
28.10.20233D-tulostettu reaktorisydän aurinkopolttoaineille
27.10.2023Tekoälyä kolmiulotteisella datalla
26.10.2023Kvantti-ilmiön sähköinen ohjaus
25.10.2023Verkkoliitäntä kvanttitietokoneille ja radiospektrin kattava ilmaisin
24.10.2023Fotonikiteet taivuttavat valoa aivan kuin painovoima
23.10.2023Nanorakenteet tehostavat litium-rikki akkuja
21.10.2023Vetyä tankaten
20.10.2023Harppaus hiilinanoputkia pidemmälle
19.10.2023Suprajohtava niobium-aaltoputki
19.10.2023Ruoste ja topologia tehostavat magnetismia
17.10.2023Virheiden osoittaminen tehostaa kvanttilaskentaa
16.10.2023Pyrosähköä viruksista
16.10.2023Uusi kubittialusta luodaan atomi kerrallaan
12.10.2023Kvasikiteitä ja ultralaajakaistaista kuvausta
11.10.2023Kontakteja ja seostusta grafeeninanonauhoihin
10.10.2023Magneettinen heterorakenne nopeuttaa tietotekniikkaa
09.10.2023Mullistava väriteknologia ja aurinkoenergia
06.10.2023Timanteista kvanttisimulaattoreita
05.10.2023Kultaa ja perovskiittiä
04.10.2023Tehokkaampaa koulutusta tekoälylle
03.10.2023Lämpötilakuvausta aineen sisältä
02.10.2023Femtosekunnin laseri lasista
29.09.2023Tavoitteena parempia kubitteja
28.09.2023Suola ja kulta tuottavat sähköä
27.09.2023Laaksotroniikka lämpenee
26.09.2023Tekoälyä monisensorisella integroidulla neuronilla
25.09.2023Magneetteja huonelämpöiseen kvanttilaskentaan
23.09.2023Lupaavia vedyn tuotannon tapoja
23.09.2023Kvanttipotentiaalin vapauttaminen monipuolisilla kvanttitiloilla
21.09.2023Terahertsiaaltoja helpommin
20.09.2023Espoosta voi ostaa kvanttitietokoneen
19.09.2023Kvanttianturien tarkkuutta voi edelleen parantaa
18.09.2023Kaksiulotteisia fettejä piikiekolle
16.09.2023Grafeenia, vihreää energiaa ja materiaaleja
15.09.2023Infrapunavaloa kvanttipisteistä
14.09.2023Kohti täydellisiä optisia resonaattoreita
13.09.2023Pidemmän kantaman vedenalaista viestintää
12.09.2023Pisara-akku tasoittaa tietä biointegroinnille
11.09.2023Atomisen tarkkoja antikvanttipisteitä
08.09.2023Outo metalli on nyt vähemmän outo
07.09.2023Yhtä aikaa analoginen ja digitaalinen
06.09.2023Fotoni kuljettaa ja koodaa kvantti-informaatiota
05.09.2023Parempi kyberturvallisuus uudella materiaalilla
04.09.2023Miten valo toimii? Kysy mekaanikolta
01.09.2023Spinin kytkentää kvanttimateriaalissa huonelämpötilassa
31.08.2023Kuditit antavat välähdyksen kvanttitulevaisuudesta
30.08.2023Ledejä piirtäen ja vaihtoehto orgaanisille ledeille
29.08.2023Ioniansoja, fermionprosessori ja kvanttihybridimekaniikkaa
28.08.2023Grafeenin ominaisuuksia grafiittiin
26.08.2023Tehokas fotoreaktori ja kestävä polttokennoarkkitehtuuri
25.08.2023Pienenergian keruuta grafeenin värähtelystä
24.08.2023Valoa magneetin sisään
23.08.2023Hiilipohjaista kvanttitekniikkaa
22.08.2023Kohti vikasietoisia kubitteja
21.08.2023Kaksiulotteinen aaltojohde valolle
19.08.2023Aurinkokenno toimii kuin kasvin lehti
18.08.2023Seuraava askel neuromorfista laskentaa
17.08.2023Suprajohteita vaikka atomi kerrallaan
16.08.2023Nanoledejä ja kvanttivalosauvoja
15.08.2023Q-piin löytö tuo lisäpotkua kvanttilaskennalle

Näytä lisää »