Pikotiedettä ja uusia materiaaleja

11.10.2019

Yale-pikotiede-materiaalit-300-t.jpgTämä on alkuainekohtainen, STEM-mikroskopiakuva atomeista uudessa materiaalissa, jonka Yale on kehittänyt yhteistyössä Brookhavenin kansallisen laboratorion kanssa. Kuvassa on kerrostettuja arkkeja koboltti- ja titaaniatomeja.

Muutaman seuraavan vuosikymmenen vallankumoukselliset tekniikan löydöt, saattavat olla peräisin uusista materiaaleista, niin pienistä, että ne saavat nanomateriaalit näyttämään murtuneilta jättiläisiltä.

Nämä uudet materiaalit suunnitellaan ja jalostetaan pikometrien mittakaavassa, joka on tuhat kertaa pienempi kuin nanometri ja miljoona kertaa pienempi kuin mikrometri. Yalen yliopistossa aihetta kutsutaan termillä "pikoscience".

"Yalen tutkijat kehittävät uusia materiaaleja, jotka ovat pieniä, nopeita ja voivat toimia monilla tavoilla, kuten aivojen hermosolujen matkiminen, laskenta magneeteilla ja laskenta kvanttimekaniikalla", visioi vanhempi tutkija Frederick Walker, sovelletun fysiikan, mekaanisen tekniikan ja materiaalitieteen sekä fysiikan professori.

Tutkimusraportin vanhempi kirjoittaja Charles Ahn siirtää pikotutkimusta vielä yhteen suuntaan: ottaen elementtejä jaksollisesta taulukosta ja nipistäen niitä alle atomisen tason vääntäen niistä esiin uusia materiaaleja.

Jatko-opiskelija Sangjae Lee suunnitteli ja kasvatti uutta materiaalia, joka on keinotekoinen, kerrostettu kide, joka koostuu alkuaineista lantaani, titaani, koboltti ja happi.

Tutkijat kerrostivat alkuaineita atomitaso kerrallaan, niin että yhden atomin paksuiset titaanioksidilevyt siirtävät elektronin yhden atomin paksuisiin kobolttioksidilevyihin. Tämä muutti kobolttioksidilevyn elektronista konfiguraatiota ja magneettisia ominaisuuksia.

"Pystyimme manipuloimaan ainesosan atomeja tarkkuudella, joka on paljon pienempi kuin itse atomi", hehkuttaa Sangjae Lee. "Tämäntyyppiset uudet kiteet voivat muodostaa perustan uusien magneettimateriaalien kehittämiselle, joissa näin pienillä mitoilla herkkää tasapainoa magnetismin ja elektronisen johtavuuden välillä voidaan manipuloida uusissa, transistorien kaltaisissa laitteissa, joilla on suorituskykyetua nykypäivän transistoreihin nähden."

Käytännön tutkimuksia tehtiin National Synchrotron Light Source II -tutkimuslaitoksessa. Synkrotroni valolähde II on noin jalkapallokentän kokoinen laitteisto, joka kiihdyttää elektroneja lähes valon nopeuteen. Elektronit tuottavat erittäin kirkkaita röntgensäteitä, joita tutkijat hyödyntävät kokeissaan.

Uusien materiaalien suunnittelun ja kasvattamisen lisäksi Sangjae Lee karakterisoi niitä ja analysoi tuloksia. Teoreettiselta puolelta Yalen kollegat Alex Taekyung Lee ja Alexandru Georgescu käyttivät kvanttimekaanisia laskelmia selvittääkseen materiaalien rakenteen ja sen vaikutuksen sähköiseen kokoonpanoon. Tämän työn avulla ryhmä pystyi kuvaamaan materiaalien magneettisen tilan.

Yale on määritellyt kvanttimateriaalien kehittämisen ensisijaiseksi tutkimusalueekseen, ennakoiden niiden käyttöä uusissa laskentajärjestelmissä, jotka ylittävät huomattavasti nykypäivän tietokoneet.

15.12.2023Hierarkkinen generatiivinen mallinnus autonomisille roboteille
14.12.2023Uusi näkemys moniarvoisten akkujen suunnitteluun
13.12.2023Optisella langattomalla ei ehkä enää ole esteitä
13.12.2023Fyysikot kvanttilomittavat yksittäisiä molekyylejä
12.12.2023Edullista tribosähköä ja aurinkokenno puumateriaalista
08.12.20232D-materiaaleista 3D-elektroniikkaa tekoälylaitteistoihin
07.12.2023Fotonikomponentteja RF-signaalin käsittelyyn
06.12.2023Elektromagnoniikasta uusi tiedonkäsittelyn alusta
05.12.2023Uusi alusta kvantti-informaation käsittelyyn
04.12.2023Lämpöä voidaan käyttää laskentaan
01.12.2023Askel biologian ja mikroelektroniikan integroinnille
30.11.2023Josephson-liitosten käyttö supravirran ohjaamiseen
29.11.2023Mikrotekniikkaa ja molekyylikemiaa aurinkokennoille
28.11.2023Materiaalien kehittelyä koneoppisella
27.11.2023Kaksiulotteisia magneetteja tietotekniikalle
25.11.2023Uusi jäähdytysmekanismi jääkaapeille ja jäähdytyslaitteille
24.11.2023Vangita elektroneja 3D-kiteeseen
23.11.2023Pikofotoniikan synty: Kohti aikakidemateriaaleja
22.11.2023Veden ja ilman välinen akustinen viestintä
21.11.2023Uusia kubittiratkaisuja
20.11.2023Erittäin nopeat laserit erittäin pienillä siruilla
18.11.2023Grafeenia, fotosynteesiä ja tekoälyä vihreään energiantuotantoon
17.11.2023Parempaa energiatehokkuutta tietojenkäsittelyyn
16.11.2023Kommunikointia tyhjyyden kanssa
15.11.2023Metamolekyylisen metamateriaalin valmistus
14.11.2023Läpi ahtaankin raon
13.11.2023Outo magneettinen materiaali voi tehdä laskennasta energiatehokasta
11.11.2023Sähköä molekyylien ja ionien tasolta
11.11.2023Neuroverkkoja optisesti ja kvanttihybridinä
09.11.2023Viisi kerrosta grafeenia
08.11.2023Lämmönsiirron hallintaa transistorilla
07.11.2023Metamateriaali yhdistää katkenneet hermot
06.11.2023Valoa valolla ohjaten
04.11.2023Hiilidioksidia polttoaineeksi tehokkaasti
03.11.20233D-tulostustekniikkaa kvanttiantureille
03.11.2023Magnetismia ei-magneettisissa materiaaleissa
02.11.2023Energiatehokas tekoälysiru
01.11.2023Ferrosähköisyyttä piin kanssa ja yhdellä alkuaineella
31.10.2023Magneettisten aaltojen hallinta suprajohteilla
30.10.2023Vakautta ja tehokkuutta perovskiittiaurinkokennoille
28.10.20233D-tulostettu reaktorisydän aurinkopolttoaineille
27.10.2023Tekoälyä kolmiulotteisella datalla
26.10.2023Kvantti-ilmiön sähköinen ohjaus
25.10.2023Verkkoliitäntä kvanttitietokoneille ja radiospektrin kattava ilmaisin
24.10.2023Fotonikiteet taivuttavat valoa aivan kuin painovoima
23.10.2023Nanorakenteet tehostavat litium-rikki akkuja
21.10.2023Vetyä tankaten
20.10.2023Harppaus hiilinanoputkia pidemmälle
19.10.2023Suprajohtava niobium-aaltoputki
19.10.2023Ruoste ja topologia tehostavat magnetismia
17.10.2023Virheiden osoittaminen tehostaa kvanttilaskentaa
16.10.2023Pyrosähköä viruksista
16.10.2023Uusi kubittialusta luodaan atomi kerrallaan
12.10.2023Kvasikiteitä ja ultralaajakaistaista kuvausta
11.10.2023Kontakteja ja seostusta grafeeninanonauhoihin
10.10.2023Magneettinen heterorakenne nopeuttaa tietotekniikkaa
09.10.2023Mullistava väriteknologia ja aurinkoenergia
06.10.2023Timanteista kvanttisimulaattoreita
05.10.2023Kultaa ja perovskiittiä
04.10.2023Tehokkaampaa koulutusta tekoälylle
03.10.2023Lämpötilakuvausta aineen sisältä
02.10.2023Femtosekunnin laseri lasista
29.09.2023Tavoitteena parempia kubitteja
28.09.2023Suola ja kulta tuottavat sähköä
27.09.2023Laaksotroniikka lämpenee
26.09.2023Tekoälyä monisensorisella integroidulla neuronilla
25.09.2023Magneetteja huonelämpöiseen kvanttilaskentaan
23.09.2023Lupaavia vedyn tuotannon tapoja
23.09.2023Kvanttipotentiaalin vapauttaminen monipuolisilla kvanttitiloilla
21.09.2023Terahertsiaaltoja helpommin
20.09.2023Espoosta voi ostaa kvanttitietokoneen
19.09.2023Kvanttianturien tarkkuutta voi edelleen parantaa
18.09.2023Kaksiulotteisia fettejä piikiekolle
16.09.2023Grafeenia, vihreää energiaa ja materiaaleja
15.09.2023Infrapunavaloa kvanttipisteistä
14.09.2023Kohti täydellisiä optisia resonaattoreita
13.09.2023Pidemmän kantaman vedenalaista viestintää
12.09.2023Pisara-akku tasoittaa tietä biointegroinnille
11.09.2023Atomisen tarkkoja antikvanttipisteitä
08.09.2023Outo metalli on nyt vähemmän outo
07.09.2023Yhtä aikaa analoginen ja digitaalinen
06.09.2023Fotoni kuljettaa ja koodaa kvantti-informaatiota
05.09.2023Parempi kyberturvallisuus uudella materiaalilla
04.09.2023Miten valo toimii? Kysy mekaanikolta
01.09.2023Spinin kytkentää kvanttimateriaalissa huonelämpötilassa
31.08.2023Kuditit antavat välähdyksen kvanttitulevaisuudesta
30.08.2023Ledejä piirtäen ja vaihtoehto orgaanisille ledeille
29.08.2023Ioniansoja, fermionprosessori ja kvanttihybridimekaniikkaa
28.08.2023Grafeenin ominaisuuksia grafiittiin
26.08.2023Tehokas fotoreaktori ja kestävä polttokennoarkkitehtuuri
25.08.2023Pienenergian keruuta grafeenin värähtelystä
24.08.2023Valoa magneetin sisään
23.08.2023Hiilipohjaista kvanttitekniikkaa
22.08.2023Kohti vikasietoisia kubitteja
21.08.2023Kaksiulotteinen aaltojohde valolle
19.08.2023Aurinkokenno toimii kuin kasvin lehti
18.08.2023Seuraava askel neuromorfista laskentaa
17.08.2023Suprajohteita vaikka atomi kerrallaan
16.08.2023Nanoledejä ja kvanttivalosauvoja
15.08.2023Q-piin löytö tuo lisäpotkua kvanttilaskennalle

Näytä lisää »