Puolijohdemateriaalista paljastuu "yllättävä" piilotoiminta

(3.5.2024) Ensimmäistä kertaa tutkijaryhmä on havainnut puolijohdemateriaalin vaihtavan aktiivisesti käyttäytymistä eristeestä metalliseksi ja takaisin todellisessa rakennegeometriassa käyttämällä kehittyneitä kuvantamistekniikoita.

Tämä ainutlaatuinen kuvantaminen röntgendiffraktiomikroskopiaa käyttämällä paljasti myös odottamatonta toimintaa alla olevassa substraatissa.

Pennsylvania State Universityn ja Paul Drude Institute for Solid State Electronics -instituutin tutkijoiden mukaan löydös voi johtaa nopeampiin ja energiatehokkaampiin laitteisiin.

Tutkijat työskentelivät puolijohdemateriaalin vanadiinidioksidin (VO2) parissa, jonka he sanoivat osoittavan suurta potentiaalia elektronisena kytkimenä.

He tutkivat myös, kuinka vanadiinidioksidi on vuorovaikutuksessa substraattimateriaalin titaanidioksidin kanssa ja yllättyivät huomatessaan, että alustassa näyttää olevan aktiivinen kerros, joka käyttäytyy samalla tavalla kuin sen päällä oleva puolijohdemateriaali, kun puolijohde vaihtaa eristeen ja metallisen tilan välillä.

VO2:n potentiaali metalli-eriste-transistorina on hyvin dokumentoitu, ja materiaalia pidetään lupaavana puolijohdeteknologiassa vähäisen energiankulutuksensa vuoksi, sanoi tutkimuksen johtaja Venkatraman Gopalan.

Kartoittaessaan VO2-rakenteen tilallista ja ajallista vastetta kytkentätapahtumaan, tutkijat havaitsivat odottamattomia muutoksia materiaalin ja alustan rakenteissa.

"Havaitsimme, että kun VO2-kalvo muuttuu metalliksi, koko kalvokanava pullistuu, mikä on hyvin yllättävää", Gopalan kertoo. "Yleensä sen pitäisi kutistua. Selvästikin kalvon geometriassa tapahtui jotain muuta, mikä on jäänyt huomaamatta."

Röntgensäde voi tunkeutua VO2-kalvon läpi ja tutkia myös titaanidioksidisubstraattia (TiO2), jolle VO2-kalvo kasvatettiin. Substraattia pidetään tavallisesti sähköisesti ja mekaanisesti passiivisena materiaalina.

"Huomasimme suureksi yllätykseksemme, että tämä substraatti on erittäin aktiivinen, elää ja reagoi täysin yllättävillä tavoilla, kun kalvo muuttuu eristeestä metalliksi ja takaisin sähköpulssien ohjaamana", Gopalan kertoo.

Näiden löydösten ymmärtämiseksi tarvittiin vahvaa teoria- ja simulaatiotyötä, joka selitti kalvon ja substraatin pullistumisen kutistumisen sijaan.

Vastaukset itsessään vaativat lisätutkimusta, tutkijat sanovat, mutta he uskovat, että niiden ymmärtäminen auttaa tunnistamaan VO2:n aiemmin tuntemattomia ominaisuuksia, mukaan lukien mahdolliset vielä löytämättömät ilmiöt TiO2-substraatissa, jota pidettiin passiivisena ennen tätä tutkimusta.

Aiheesta aiemmin:

Materiaali oppii kuin aivot

Nanomaailman kvanttiominaisuuksia

Saadaanko kvanttiakut hyötykäyttöön

Elektronisten laitteiden monipuolistamista ja miniatyrisointia tavoitellaan tiedemaailmassa jo kvanttimaailman syvyydellä. Erityisesti tässä on onnistuttu materiaalien tasolla mutta myös kvanttienergia esimerkiksi akkujen osalta on otettu työn kohteeksi. Aiheesta kertoo enemmän uusin katsausartikkeli.

Elektroniikkasatu

Uusin kirjani Elektroniikkasatu on eräänlainen oma elämänkerta elektronien parissa. Se on myös tietynlainen historiallinen kertomus elektronien vaikutuksesta nykymaailman talouselämään ja esimerkiksi nuorisokulttuuriin.


Aiemmat uutiset

Äänivärähtelyihin perustuva kvanttimuisti (02.05.2024)
Kööpenhaminan yliopiston Niels Bohr -instituutin tutkijat ovat kehittäneet uuden tavan luoda kvanttimuistia: Pieni rumpu voi tallentaa valolla siirrettyä dataa sen..

Joustava ja tehokas DC-muunnin kestävän energian mikroverkkoihin (01.05.2024)
Koben yliopiston kehitystyö voi liittää tehokkaasti yhteen monenlaisia ​​energialähteitä ja samalla parantaa järjestelmän vakautta ja yksinkertaisuutta..

Valo reagoi magneettikenttään kuin elektroni (30.04.2024)
Toisin kuin elektronit, valon hiukkaset ovat varauksettomia, joten ne eivät reagoi magneettikenttiin. Tästä huolimatta tutkijat ovat nyt kokeellisesti saaneet valon..

Valoa tehokkaammin ja valolla tunnustellen (29.04.2024)
Uumajan yliopisto on saavuttanut läpimurron seuraavan sukupolven valonlähteiden kehittämisessä. Uusi menetelmä tehokkuushäviöiden ymmärtämiseen ja mittaamiseen vauhdittaa..

Aivojen kaltainen tietokone vedellä ja suolalla (27.04.2024)
Utrechtin yliopiston teoreettiset fyysikot ja Etelä-Korean Sogangin yliopiston kokeelliset fyysikot ovat onnistuneet rakentamaan keinotekoisen synapsin. Tämä synapsi..