Perovskiitista spintroniikan perusta?

15.01.2019

UTAH-perovskiitti-spintroniikka-300.jpgSpintronisen ledin emittoiman valon aallonpituudet ja pikkukuvassa sen tuottamaa vihreää valoa.

Vuonna 2017 Utahin yliopiston fyysikko Valy Vardeny kutsui perovskiittia ihme materiaaliksi uuden sukupolven elektroniikan kehittyvälle alalle, eli spintroniikalle ja hän seisoo yhä tämän väitteensä takana.

Uusimmassa tiedejulkaisussa Vardeny ja kollegansa esittelevät kahta perovskiittiä käyttävää piirirakennetta materiaalin potentiaalin osoittamiseksi spintronisissa järjestelmissä.

Perovskiitit ovat menestyneet muun muassa aurinkokennojen tutkimuksissa mutta Vardeny ja hänen kollegansa tutkivat sen mahdollisuuksia spintroniikan parissa. Perovskiitin raskaiden lyijyatomien vuoksi fyysikot ennustivat, että mineraalilla voi olla voimakas spin-kiertorata kytkentä.

Vuoden 2017 paperissa Vardeny ja fysiikan apulaisprofessori Sarah Li osoittivat, että orgaanis-epäorgaanisissa hybrideissä perovskiiteissä on todellakin suuri spin-kiertorata -kytkentä. Seuraava vaihe, jonka Vardeny ja kumppaninsa saavuttivat äskettäin, oli sisällyttää hybridi perovskiitti spintronisiin piirirakenteisiin.

Ensimmäinen niistä on spintroninen valoa emittoiva diodi. Perinteisen ledin puolijohde sisältää elektroneja ja aukkoja ja kun elektronit virtaavat diodin läpi, ne täyttävät aukot ja emittoivat valoa.

Spintroninen ledi toimii paljolti samalla tavalla, mutta magneettisella elektrodilla ja elektronin aukoilla, jotka on polarisoitu tietyn spinin omaavien elektronien vastaanottamiseksi. Ledi loistaa kierteisesti polarisoidulla elektroluminesenssilla koska magneettinen elektrodi siirsi onnistuneesti spin-polarisoituja elektroneja materiaaliin.

Toinen rakenne on spinventtiili. Vastaavia käytetään jo esimerkiksi tietokoneen kiintolevyissä muuttamassa venttiilin magneettisten materiaalien napaisuutta matalan ja korkean resistanssin tilan välillä ulkoisella magneettikentällä.

Tutkijoiden uusi spinventtiili tekee enemmän. Kun materiaalina on hybridiperovskiitti, he voivat injektoida spinin rakenteeseen ja aiheuttaa sitten spinin heilahduksen rakenteen sisällä käyttäen magneettista manipulointia.

Se on iso juttu, toteavat tutkijat. ”Voit kehittää spintroniikkaa, joka ei ole pelkästään hyödyllistä informaation ja datan tallentamisessa, vaan myös laskennassa”, toteavat tutkijat yliopistonsa tiedotteessa.

Yhdessä nämä kokeet osoittavat, että perovskiitti toimii spintronisena puolijohteena. Spinpohjaisen transistorin lopullinen tavoite on edelleen muutaman askeleen päässä, mutta tässä tutkimuksessa luodaan tärkeä perusta tulevalle työlle.

Aiheesta aiemmin:

Yksikiteistä hybridiperovskiittia elektroniikkaan

Kirkasta tulevaisuutta ledeille

17.09.2021Kiertymiä ja laaksoja
16.09.2021Vihreää polttoainetuottoa kehittäen
15.09.2021Topologiaa ja magneettisuutta
14.09.2021Kvanttianturit ohenevat
13.09.2021Nanokamera seuraa kemiallisia reaktioita
10.09.2021Komplementaarista galliumnitridielektroniikkaa
08.09.2021Käytännöllisiä lämpösähkömateriaaleja
06.09.2021Ionit vauhdikkaina erittäin ohuissa savissa
03.09.2021Akun anodi ja katodi osana kotelointia
01.09.2021Nanomaailman kvanttiominaisuuksia

Siirry arkistoon »