Lasertekniikalla grafeenia hyötykäyttöön

25.06.2019

Purdue-RICE-Stanford-Flip-flop-300-t.jpgLipokkaaseen upotettu nanogeneraattori pystyi tallentamaan kondensaattoriin 0,22 miljoulea sähkönkulutusta 1 kilometrin kävelymatkan jälkeen, sanoi Rice-tutkijatohtori Michael Stanford, paperin johtaja. Tämä energian varastointi on riittävän tehokas kuljettavien anturien ja elektroniikan tuottamiseksi ihmisen liikkeellä.

Rice Universityn laboratoriossa on sovitettu laserindusoitu grafeeni (LIG) pieniksi, metallittomiksi rakenteiksi, jotka tuottavat sähköä. LIG-komposiittien joutuminen kosketuksiin muiden pintojen kanssa tuottaa staattista sähköä, jota voidaan ohjata pienlaitteiden käyttöön.

Triboelektrisen vaikutuksen avulla materiaalit keräävät varauksen kontaktin kautta. Kun ne kootaan yhteen ja vedetään sitten erilleen, muodostuu pintavarauksia, jotka voidaan kanavoida energiantuotantoon.

LIG grafeenivaahto syntyy kun kemikaaleja kuumennetaan polymeerin tai muun materiaalin pinnalla laserilla, jolloin vain kaksiulotteisen hiilen hiutaleet liittyvät toisiinsa. Laboratorio teki ensin LIG:n yleiselle polyimidille, mutta laajensi tekniikkaa kasveihin, elintarvikkeisiin sekä käsiteltyyn paperiin ja puuhun.

Paras kokoonpano polyimidi-LIG-komposiitin ja alumiinin elektrodeilla tuotti yli 3,5 kilovoltin jännitteitä, joiden huipputeho oli yli 8 milliwattia.

Grafeenilla ei ole luonnostaan elektroniikan kaipaamaa kaistaeroa .

Purdue-lasertekniikka-avaa-grafeenin-kaistaeron-300-t.jpgNyt Purdue-yliopiston tutkijat yhteistyössä Michiganin yliopiston ja Huazhongin yliopiston kanssa osoittavat puolestaan, miten lasertekniikka voi muokata grafeenia ottamaan pysyvästi rakenteen, joka tuottaa sille ennätykselliseen 2,1 elektronivoltin kaistaeron.

”Tämä on ensimmäinen kerta, kun on saavutettu näin suuri kaistaero vaikuttamatta itse grafeeniin, kuten kemiallisen seostuksen tapauksessa. Olemme vain pingottaneet materiaalia,” toteaa Purduen teollisuustekniikan professori Gary Cheng.

Tutkijat ovat aiemmin tutkijat saaneet kaistaeroa aikaan myös materiaalia venyttämällä, mutta se ei yksin suurenna kaistaeroa kovin paljon. On muutettava grafeenin muotoa pysyvästi, jotta kaistaero säilyy avoimena, selvittää Cheng.

Cheng ja hänen työtoverinsa eivät vain pitäneet kaistaeroa avoinna, vaan myös säätivät sen leveyttä nollasta 2,1 elektronivolttiin. Näin ollen tutkijat ja valmistajat saavat mahdollisuuden käyttää vain tiettyjä grafeenin ominaisuuksia riippuen siitä, mitä he haluavat materiaalin tekevän.

Vaikka tekniikka ei vielä saa grafeenia puolijohdepiireihin, tekniikka antaa enemmän joustavuutta materiaalin optisten, magneettisten ja lämpöominaisuuksien hyödyntämiseen, Cheng sanoi.

Aiheesta aiemmin:

Grafeeni lähemmäksi transistorisovelluksia

Grafeeni ja sen kaverit

06.09.2024Fotonien uudet muodot optisille teknologioille
05.09.2024Kvanttimikroprosessori simuloi kvanttikemiaa
04.09.2024Kuumien kantajien lupaus plasmonisissa nanorakenteissa
03.09.2024Sähkökentät katalysoivat grafeenin energia- ja laskentanäkymiä
02.09.2024Uusi materiaali optisesti ohjatulle magneettiselle muistille
30.08.2024Kierre parantaa kiinteää elektrolyyttiä
29.08.2024Antureita atomien ja nanomittojen maailmaan
28.08.2024Tehon keruuta RF-signaaleista spin-tekniikalla
27.08.2024Elektronit ja aukot kulkevat kiteessä eri suuntiin ilman resistanssia
26.08.2024"Kaksi yhteen" fissio parantaisi aurinkokennojen tehokkuutta

Siirry arkistoon »