Spintroniikkaa ja muistitekniikkaa

28.06.2019

Tokio-pieni-ohjaus-spintroniikalle-300-t.jpgKaavio osoittaa, miten magnetointi kääntyy GaMnAs-kiteessä.

Tokion yliopiston tieteilijät ovat luoneet elektronisen piirirakenteen, joka osoittaa laskennallisen logiikan ja muistipiirien tuleville sukupolville tärkeitä toimintoja ja kykyjä.

Piirirakenteelle saavutettiin spin orbit torque (SOT) -vaihtokytkentä yhden kerroksen kohtisuoralla magnetisoinilla yksikiteisessä ferromagneetissa.

Se on tehonkäytöltään jopa kaksi suuruusluokkaa parempi kuin aikaisemmat yritykset luoda samantyyppinen komponentti. Uusi komponentti on ajateltu kehittyvälle spintroniikan alalle, jossa kyky magnetoida materiaali nopeasti ja tehokkaasti olisi omiaan.

Tokion yliopisto professori Masaaki Tanakan johdolla ohuesta ferromagneettisesta materiaalista luodun rakenteen magnetointi voidaan kääntää täysin hyvin pienillä virtatiheyksillä. Näin voitaisiin ratkaista magneettisen muistirakenteiden magnetoinnin vaihtoon tarvittavan suuren virrankulutuksen ongelma.

"Meidän ferromagneettinen puolijohdemateriaali - gallium-mangaani-arsenidi (GaMnAs) - on ihanteellinen tähän tehtävään, koska se on laadukas yksittäinen kide," toteaa professori Tanaka.

Spintroniikan sovellukset kaipaavat myös uusia magneettisia materiaaleja, joilla on uusia ominaisuuksia. Olisi valtava etu, jos magneettisuus tapahtuu esimerkiksi kaksiulotteisissa materiaaleissa.

EPFL:n tutkijat ovat yllättäen löytäneet tällaisen magneettisuuden täysin kiteisestä PtSe2-materiaalista vaikka se on perustaltaan ei-magneettinen.

"Tämä on ensimmäinen kerta, kun tämäntyyppisissä 2D-materiaaleissa havaitaan vikakohdan aiheuttamaa magneettisuutta," toteaa Andras Kis. PtSe2:n yhden kerroksen poistaminen tai lisääminen riittää muuttamaan tapaa, jolla spinit keskustelevat keskenään kerrosten välillä. Lisäksi sen magnetismia, jopa saman kerroksen sisällä, voidaan edelleen manipuloida asettamalla vikakohdat pintaan.

"Tällaiset erittäin ohuet metalliset magneetit voitaisiin integroida seuraavan sukupolven spin-transfer-torque -magneettisiin RAM-muisteihin [STT MRAM],” toteavat tutkijat.

Myös ferrosähköinen FET (FeFET) on lupaava muistirakenne, koska sen tehonkäyttö on pientä ja sillä on suuri nopeus ja kapasiteetti.

Tokio-Japan-IGZO-kanava-286-t.jpgVielä korkeamman kapasiteetin saavuttamiseksi mennään kohti 3D-integraatiota, jota ajatellen japanilainen tutkijaryhmä on kehittänyt ferrosähköisen HfO2 -perustaisen FeFETin, jossa kanava perustuu IGZO-materiaaliin.

IGZO:n materiaaliominaisuuksien ja liitoksettoman transistoritoiminnan ansiosta he saavuttivat uuden polun matalajännitteen ja erittäin luotettavan FeFETin toteuttamiseksi 3D-pystysuoran pino-rakenteen avulla.

IGZO tuottaa kanavaan paremman liikkuvuuden kuin perinteisessä poly-pii-kanavassa. Piirille saatiin 0,5 voltin muisti-ikkuna ja lähes ihanteellinen SS 60 mV/dec.

Aiheista aiemmin:

Spintroniikka näyttää kykynsä

Läpimurtoja atominohuissa magneeteissa

Uusi konsepti haihtumattomalle muistille
19.07.2019Luminenssilamput kehittyvät
12.07.2019Atomista audiotallennusta
03.07.2019Informaation teleporttausta timantissa
02.07.2019Orgaanisia katodeja tehokkaille akuille
28.06.2019Spintroniikkaa ja muistitekniikkaa
27.06.2019Edistysaskeleita kvanttitietotekniikalle
26.06.2019Oksidimateriaalit kaupallistuvat
25.06.2019Lasertekniikalla grafeenia hyötykäyttöön
24.06.2019Ionitekniikkaa kondensaattoreihin
20.06.2019Tehokkaampia tehopiiritekniikoita

Siirry arkistoon »