Kubitteja ohjaten

13.01.2021

Basel-kubittien-vaihtokytkenta-aalto-225-R-t.jpgSähköisesti kytkettävä kubitti: germaniumista ja piistä (sin/vihr) valmistettu nanolanka sijaitsee porttielektrodien päällä. Portteihin kohdistuvat jännitteet johtavat yksittäisten ominaisuuksiltaan erilaisten spinkubittien muodostumiseen, joita voidaan käsitellä mikroaaltosignaaleilla

Baselin yliopiston ja TU Eindhovenin tutkijat ovat raportoineet sähköisesti ohjattavasta kubitista, jota voidaan kytkeä tallennustilan ja nopean laskentatilan välillä.

Kvanttilaskennan haasteena on pitää herkkähipiäiset kubitit vakaina riittävän pitkään samalla kun etsitään tapaa suorittaa nopeita kvanttioperaatioita. Nyt fyysikkotutkijoiden kehittämän kytkettävän kubitin pitäisi mahdollistaa kvanttitietokoneiden tehdä molemmat.

Uuden tyyppisellä kubitilla on vakaa mutta hidas tila, joka soveltuu kvantti-informaation tallentamiseen. Tutkijat pystyivät kuitenkin myös vaihtamaan kubitin paljon nopeammaksi, mutta vähemmän vakaaseen manipulointitilaan sähköjännitteellä. Tällöin kubitteja voidaan käyttää nopeaan informaation käsittelyyn.

Tutkijoiden kubitit perustuvat elektroniaukkojen spineihin yksiulotteisessa germaniun-pii nanorakenteissa. Uudentyyppisessä kubitissa nämä spinit voidaan kytkeä valikoivasti - esimerkiksi fotonin kautta - muihin spineihin virittämällä niiden resonanssitaajuuksia nanosekuntien nopeuksilla.

Tämä kyky on elintärkeä, koska tehokkaan kvanttitietokoneen rakentaminen vaatii kykyä hallita ja yhdistää useita yksittäisiä kubitteja valikoivasti. Skaalautuvuus on välttämätöntä kvanttilaskelmien virhesuhteen vähentämiseksi.

Elektronien lomittuminen lämmöllä

Aalto yliopiston johdolla joukko kansainvälisiä tutkijoita on osoittanut, että lämpötilaeroa voidaan käyttää elektroniparien lomittumiseen suprajohtaviin rakenteissa.

Professori Pertti Hakosen johtama työryhmä on osoittanut, että lämpösähköinen vaikutus tarjoaa uuden menetelmän lomittuneiden elektronien tuottamiseksi uudessa laiterakenteessa.

Kun otetaan huomioon lomittumisen merkitys vaikkapa kvanttitietotekniikalle, kyky luoda lomittuminen helposti ja hallittavasti on tärkeä tavoite tutkijoille.

Basel-AALTO-elektronien-lomittaminen-225-t.jpgTutkijat suunnittelivat rakenteen, jossa suprajohde kerrostettiin grafeeni- ja metallielektrodeilla. He havaitsivat ei-paikallisen Seebeck-vaikutuksen tässä grafeenipohjaisessa Cooperin parin jakajarakenteessa, joka käsittää kaksi kvanttipistettä, jotka on kytketty alumiiniseen suprajohteeseen.

Eli lämpötilaeroa käyttäen saatiin Cooper pari jakautumaan, ja siirtymään eri elektrodille. Silti elektronit ovat lomittuneet vaikka ne ovat omilla elektroneillaan. Menettely tarjoaa tehokkaan työkalun lomittuneiden elektronien tuottamiseen.

Aiheista aiemmin:

Elektronin geometria määritelty

Lomittumista huonelämpöisessä puolijohteessa

25.01.2021Katalyyttiä atomikerroksittain säätäen
22.01.2021Nano-ohutta energiankeruuta
21.01.2021Metallista perovskiittiä
20.01.2021Tutkijat kesyttävät fotoni-magnoni -vuorovaikutuksen
19.01.2021Transistoreita kutistaen
18.01.2021Sinistä valoa perovskiittiledeistä
15.01.2021Uusi nanorakenteinen yhdiste anodille
14.01.2021Fyysikot luovat aikakäänteisiä optisia aaltoja
13.01.2021Kubitteja ohjaten
12.01.2021Pullisteleva perovskiitti

Siirry arkistoon »