Kubitteja ohjaten

13.01.2021

Basel-kubittien-vaihtokytkenta-aalto-225-R-t.jpgSähköisesti kytkettävä kubitti: germaniumista ja piistä (sin/vihr) valmistettu nanolanka sijaitsee porttielektrodien päällä. Portteihin kohdistuvat jännitteet johtavat yksittäisten ominaisuuksiltaan erilaisten spinkubittien muodostumiseen, joita voidaan käsitellä mikroaaltosignaaleilla

Baselin yliopiston ja TU Eindhovenin tutkijat ovat raportoineet sähköisesti ohjattavasta kubitista, jota voidaan kytkeä tallennustilan ja nopean laskentatilan välillä.

Kvanttilaskennan haasteena on pitää herkkähipiäiset kubitit vakaina riittävän pitkään samalla kun etsitään tapaa suorittaa nopeita kvanttioperaatioita. Nyt fyysikkotutkijoiden kehittämän kytkettävän kubitin pitäisi mahdollistaa kvanttitietokoneiden tehdä molemmat.

Uuden tyyppisellä kubitilla on vakaa mutta hidas tila, joka soveltuu kvantti-informaation tallentamiseen. Tutkijat pystyivät kuitenkin myös vaihtamaan kubitin paljon nopeammaksi, mutta vähemmän vakaaseen manipulointitilaan sähköjännitteellä. Tällöin kubitteja voidaan käyttää nopeaan informaation käsittelyyn.

Tutkijoiden kubitit perustuvat elektroniaukkojen spineihin yksiulotteisessa germaniun-pii nanorakenteissa. Uudentyyppisessä kubitissa nämä spinit voidaan kytkeä valikoivasti - esimerkiksi fotonin kautta - muihin spineihin virittämällä niiden resonanssitaajuuksia nanosekuntien nopeuksilla.

Tämä kyky on elintärkeä, koska tehokkaan kvanttitietokoneen rakentaminen vaatii kykyä hallita ja yhdistää useita yksittäisiä kubitteja valikoivasti. Skaalautuvuus on välttämätöntä kvanttilaskelmien virhesuhteen vähentämiseksi.

Elektronien lomittuminen lämmöllä

Aalto yliopiston johdolla joukko kansainvälisiä tutkijoita on osoittanut, että lämpötilaeroa voidaan käyttää elektroniparien lomittumiseen suprajohtaviin rakenteissa.

Professori Pertti Hakosen johtama työryhmä on osoittanut, että lämpösähköinen vaikutus tarjoaa uuden menetelmän lomittuneiden elektronien tuottamiseksi uudessa laiterakenteessa.

Kun otetaan huomioon lomittumisen merkitys vaikkapa kvanttitietotekniikalle, kyky luoda lomittuminen helposti ja hallittavasti on tärkeä tavoite tutkijoille.

Basel-AALTO-elektronien-lomittaminen-225-t.jpgTutkijat suunnittelivat rakenteen, jossa suprajohde kerrostettiin grafeeni- ja metallielektrodeilla. He havaitsivat ei-paikallisen Seebeck-vaikutuksen tässä grafeenipohjaisessa Cooperin parin jakajarakenteessa, joka käsittää kaksi kvanttipistettä, jotka on kytketty alumiiniseen suprajohteeseen.

Eli lämpötilaeroa käyttäen saatiin Cooper pari jakautumaan, ja siirtymään eri elektrodille. Silti elektronit ovat lomittuneet vaikka ne ovat omilla elektroneillaan. Menettely tarjoaa tehokkaan työkalun lomittuneiden elektronien tuottamiseen.

Aiheista aiemmin:

Elektronin geometria määritelty

Lomittumista huonelämpöisessä puolijohteessa

26.04.2024Uudenlaisia kondensaattoreita ja keloja
25.04.2024Kvanttielektroniikka grafeenien avulla
24.04.2024Akku ja superkonkka yhteen soppii
23.04.2024Kaareva datalinkki esteitä ohittamaan
22.04.2024Kvanttimateriaali lupaa uutta puhtia aurinkokennoille
21.04.2024Läpimurto lupaa turvallista kvanttilaskentaa kotona
20.04.2024Yksi atomikerros kultaa ja molekyylikorjaaja
19.04.2024Uusia ja yllättäviä topologiota
18.04.2024Kvanttivalo syntyy renkaassa ja lähtee kiertueelle
17.04.2024Fononit ja magnonit kaveraavat

Siirry arkistoon »