Polarisaatiota hyödyntävä fotoninen prosessori

17.06.2022

Oxford-fotoninen-laskenta-polarisaatioilla-600-t.jpgOxfordin yliopiston tutkijat ovat kehittäneet menetelmän, jossa käytetään valon polarisaatiota informaation tallennustiheyden ja laskentasuorituskyvyn maksimoimiseksi nanolankojen avulla.

Valolla on hyödynnettäviä ominaisuuksia - valon eri aallonpituudet eivät ole vuorovaikutuksessa toistensa kanssa mutta myöskään valon eri polarisaatiot eivät ole vuorovaikutuksessa toistensa kanssa. Siten myös jokaista polarisaatiota voidaan käyttää itsenäisenä informaatiokanavana, mikä kasvattaa informaatiotiheyttä.

June Sang Lee, Oxfordin yliopiston materiaaliosastolta, kertoo: "Me kaikki tiedämme, että fotoniikan etu elektroniikkaan nähden on se, että valo on nopeampaa ja toimivampaa suurilla kaistanleveyksillä. Tavoitteemme oli siis hyödyntää tällaiset ominaisuudet fotoniikan edut yhdistämällä ne viritettävän materiaalin kanssa nopeamman ja tiheämmän informaationkäsittelyn toteuttamiseksi."

Yhteistyössä Exeterin yliopiston professori C. David Wrightin kanssa tutkimusryhmä kehitti HAD-nanolangan (hybridized-active-dilectric) eli hybridilasimainen materiaali, joka muuttaa ominaisuuksiaan optisten pulssien vaikutuksesta. Jokainen nanolanka osoittaa selektiivisiä vasteita tiettyyn polarisaatiosuuntaan, joten informaatiota voidaan käsitellä samanaikaisesti käyttämällä useita eri suuntien polarisaatioita.

Tämän konseptin avulla tutkijat ovat kehittäneet ensimmäisen fotonisen laskentaprosessorin, joka hyödyntää valon polarisaatioita.

Fotoninen laskenta suoritetaan useiden polarisaatiokanavien kautta, mikä johtaa laskentatiheyden parantumiseen useilla kertaluvuilla verrattuna perinteisiin elektronisiin siruihin. Laskentanopeudet ovat nopeampia, koska nanolankoja moduloidaan nanosekuntien optisilla pulsseilla.

Tutkijat osoittivat mahdollisuuden käyttää polarisaatiota parametrina yksittäisten nanolankojen johtavuuden selektiiviseen modulointiin monesta nanolangasta koostuvassa järjestelmässä. Toiminnan osoittamiseksi he käyttivät polarisaatiota viritettävänä vektorina matriisi-vektori kertolaskun toteutuksessa.

HAD-nanolankojen lisäksi tämä konsepti on helposti yleistettävissä muihin aktiivisiin materiaaleihin, jotka on hybridisoitu dielektrikoiden kanssa, ja siten sillä on potentiaalia monenlaisiin sovelluksiin fotonisista muisteista ja reitityksestä polarisaatio-multipleksoituun laskentaan.

Työtä johtanut professori Bhaskaran toteaa: "Tämä on vasta alkua sille, mitä haluaisimme nähdä tulevaisuudessa, mikä on valon tarjoamien vapausasteiden hyödyntäminen, mukaan lukien tietojenkäsittelyn rinnakkaistamiseksi dramaattisesti polarisaation avulla. Ehdottomasti varhaisen vaiheen työtä, mutta erittäin jännittäviä ideoita, joissa yhdistyvät elektroniikka, epälineaariset materiaalit ja tietojenkäsittely."

Aiheesta aiemmin:

Laser integroitu litiumniobaattisirulle

Vaihtaa värejä sirufotoniikalla

Ympyräpolarisoidun valon piisiru

26.07.2024Sirkkakatkaravut mallina konenäölle
21.07.2024Askeleen lähempänä topologista kvanttilaskentaa
19.07.2024Miksi robotit eivät voita eläimiä?
15.07.2024Voiko energiahäviö olla nolla 1,58-mitoissa?
12.07.2024Hyönteisistä inspiroidut liiketunnistin ja logiikka
08.07.2024Kvanttiannealaari parantaa ymmärrystä kvanttimonikehojärjestelmistä
05.07.2024Hyönteisten lennon salaperäinen mekaniikka
01.07.2024Eksitonit mahdollistavat erittäin ohuen linssin
28.06.2024Luontoa tarkkaillen
27.06.2024Uusi fysikaalinen ilmiö kahden erilaisen materiaalin rajapinnassa

Siirry arkistoon »