Kolmiulotteista valon muokkausta

18.05.2023

Innsbruck-Med-valon-muotoilua-ja-kiertoa-400-t.jpgValolla on keskeinen rooli monissa sovelluksissa. Avain sen monipuolisuuden avaamiseen on sen muokkaaminen kulloiseenkin tehtävään sopivimpaan muotoon.

Erityisesti räätälöidyt taitekerroinmuunnokset, jotka on valmistettu suoraan lasin sisään lyhytpulssilaserin avulla, mahdollistavat valovirran lähes mielivaltaisen ohjauksen. Tiukat vaatimukset näiden muokkausten tietämyksestä sekä valmistustarkkuudelle ovat kuitenkin toistaiseksi estäneet valotehokkaiden aperiodisten fotonitilavuuselementtien (Aperiodic Photonic Volume Elements) valmistuksen.

Äskettäin julkaistussa tutkimuksessa Alexander Jesacherin johtamat tutkijat Innsbruckin lääketieteellisestä yliopistosta ehdottivat yksinkertaista lähestymistapaa erittäin tarkkojen APVE:iden valmistamiseksi useisiin sovelluksiin.

Kyseessä on uusi lähestymistapa tehokkaiden ja erittäin tarkkojen kolmiulotteisten valonmuokkaajien kehittämiseen.

Tutkijat optimoivat satojen tuhansien mikroskooppisten vokseleiden sovelluskohtaiset kolmiulotteiset järjestelyt ja valmistivat ne femtosekuntisella suoralaserkirjoituksella millimetrin kokoisiin lasitiloihin. Näin he saavuttivat kokeellisesti ennennäkemättömän jopa 80% diffraktiohyötysuhteen, jonka mahdollistavat tarkka vokselin karakterisointi ja adaptiivinen optiikka valmistuksen aikana.

Tutkijat esittelivät APVE-rakenteitaan erilaisilla toiminnallisuuksilla, mukaan lukien spatiaalinen moodimuunnin ja yhdistetty intensiteetin muotoilu sekä aallonpituuden multipleksointi.

Tutkijat toteavat tutkimuspaperissaan, että vaikka konseptitutkimuksemme osoittavat jo ennennäkemättömän suorituskyvyn, APVE-konseptissamme on edelleen parantamisen varaa useissa suhteissa ja se lupaa merkittävästi parempaa tehokkuutta ja onimutkaisempia toimintoja tulevaisuudessa.

Esimerkiksi APVE:mme on valmistettu yhdestä vokselityypistä, eli ne ovat binäärilaitteita. Suunnittelukonseptin laajentaminen ei-binaarisiin laitteisiin on kuitenkin yksinkertaista. Ei-binaariset rakenteet pystyvät tallentamaan enemmän informaatiota ja osoittamaan parempaa tehokkuutta.

Lisäksi konsepti on laajennettavissa erityyppisille substraateille, mukaan lukien kahtaistaitteiset, sähköoptiset ja epälineaariset substraatit, mikä mahdollisesti tarjoaa mahdollisuuden polarisaatiomuotoiluun, dynaamisiin tai jopa pyyhittäviin ferrosähköisiin APVE:ihin.

Aiheesta aiemmin:

Strukturoidun valon vääristymättömiä muotoja

Valoa vangiten ja suunnaten

26.07.2024Sirkkakatkaravut mallina konenäölle
21.07.2024Askeleen lähempänä topologista kvanttilaskentaa
19.07.2024Miksi robotit eivät voita eläimiä?
15.07.2024Voiko energiahäviö olla nolla 1,58-mitoissa?
12.07.2024Hyönteisistä inspiroidut liiketunnistin ja logiikka
08.07.2024Kvanttiannealaari parantaa ymmärrystä kvanttimonikehojärjestelmistä
05.07.2024Hyönteisten lennon salaperäinen mekaniikka
01.07.2024Eksitonit mahdollistavat erittäin ohuen linssin
28.06.2024Luontoa tarkkaillen
27.06.2024Uusi fysikaalinen ilmiö kahden erilaisen materiaalin rajapinnassa

Siirry arkistoon »