Pikofotoniikan synty: Kohti aikakidemateriaaleja

23.11.2023

Southampton-pikofotoniikka-350-t.pngNanofotoniikka käsittelee valon ja aineen välisen vuorovaikutuksen tiedettä alle mikronin mittakaavassa.

Mutta nyt on syntymässä uusi pikofotoniikan ala. Southamptonin yliopiston Optoelectronic Research Centrein professori Kevin MacDonald selvittää: "Pikofotoniikka käsittelee valoa 1000 kertaa pienemmässä mittakaavassa kuin nanofotoniikan ala. Se on tiedettä valosta atomien mittakaavassa, alueella jossa atomin tyypillinen koko on noin kaksisataa pikometriä."

Läpimurto sen ymmärtämisessä, että itse valoa voidaan strukturoida pikometrin mittakaavassa, että nanorakenteisten materiaalien optisia ominaisuuksia voidaan muuttaa niiden osien pikometrisen asteikon liikkeillä ja että valo voi ohjata tällaista liikettä, ovat auttaneet ryhmän tutkijoita ymmärtämään uusi aineen tila, joka tunnetaan "aikakiteenä", jota ehdotettiin teoriassa vasta kymmenen vuotta sitten. Aikakiteillä on rakenne, joka värähtelee – on jaksollinen – ajassa, toisin kuin tutut kiinteän olomuodon kiteet, joiden rakenne on jaksollinen tilassa.

Kevin tarkensi ja totesi: "Tämä tila, alkuperäistä käsitettä lähellä olevassa muodossa, on ollut vaikeasti kokeissa viime aikoihin asti. ORC:ssa olemme saavuttaneet sen klassisessa fotonisessa metamateriaalissa.

"Valon aiheuttamat vuorovaikutukset metamateriaalin rakenneosien välillä ohjaavat siirtymän kohisevista, korreloimattomista lämpövaihteluista (vrt. Brownin liike) pikoasteikolla synkronoituun jaksolliseen värähtelyyn - aikakidetilaan."

Hän lisää: "Tämä on vasta alkua uudelle jännittävälle luvulle fotoniikan tutkimuksessa. Olemme osoittaneet, kuinka valoa voidaan käyttää ilmiöiden tutkimiseen ja hallitsemiseen pikometrisessä mittakaavassa, mikä johtaa käytännöllisiin aikakidemateriaaleihin. Tämä avaa tien uuteen ymmärrykseen perusoptisen fysiikan alalla ja lukuisiin uusiin toimintoihin ja sovelluksiin, joita on tutkittava tulevina vuosina."

Aiheesta aiemmin:

Kohti pikofotoniikkaa

Pikotiedettä ja uusia materiaaleja
23.02.2024Uusi resepti kvanttisimuloinnille
22.02.2024Li-ion-johteita uuden suunnan kestäville akuille
21.02.2024Uusi laji magnetismia
20.02.2024Hyppivät atomit muistavat missä ne ovat olleet
19.02.2024Puolipallon muoto aurinkokennoon
17.02.2024Perovskiittiä vihreän vedyn tuotantoon
16.02.2024Fotoniikan nanovalmistusta printterillä
15.02.2024Neuromorfisia näkösensoreita
14.02.20242D-materiaaleista heterorakenteita
13.02.2024Magneettisten supervoimien vapauttaminen

Siirry arkistoon »