Eksipleksit hallintaan

03.03.2016

Kyushu-eksipleksi-valike-elektroniikkaa-300-t.jpgJapanilaisen Kyushun yliopiston tutkijat ovat esitelleet löytönsä, jonka avulla he pystyivät laajalti vaihtelemaan orgaanisten valodiodien emission väriä ja tehokkuutta.

Menetelmä perustuu eksiplekseihin, joissa yksinkertaisesti vain muutetaan avainmolekyylien etäisyyttä laitteessa muutamalla nanometrillä.

Tämä on uusi tapa hallita sähköisiä ominaisuuksia muuttamalla pikkaisen rakenteen paksuutta materiaalien vaihdon sijaan. Se voi johtaa uudenlaisiin orgaanisiin elektronisiin laitteisiin, joiden kytkentäkäyttäytyminen tai valon emissio reagoi ulkoisiin tekijöihin.

Keskeinen tekijä määrittää orgaanisen rakenteiden ominaisuuksia, on eksitoni-virityksien käyttäytyminen. Eksitoni koostuu negatiivisesta elektronista, joka on liittynyt positiiviseen aukkoon. Esimerkiksi OLED:ssa näiden virityksien energia vapautuu valona.

Eksitonit ovat yleensä lokalisoituneet yhteen orgaaniseen molekyyliin, joten eri värien esiin saamiseksi on yleensä syntetisoitava uusia molekyylejä.

Sen sijaan Kyushun tutkijat keskittyivät erityyppisiin eksitoneihin, joita kutsutaan eksiplekseiksi. Niitä muodostuu aukosta ja elektronista, jotka sijaitsevat kahdessa eri molekyylissä saman molekyylin sijaan. Manipuloimalla näiden molekyylien välistä etäisyyttä tutkijat pystyivät muuttamaan näiden heikosti sitoutuneiden eksitonien ominaisuuksia.

Muutokset voivat olla suuriakin: lisäämällä OLED:iin välikerros, jonka paksuus on vain 5 nm, emission väri siirtyi oranssista kellanvihreäksi ja valonemission teho kasvoi 700%. Jotta tämä toimisi, välikerroksen molekyylillä on oltava korkeampi eksitaatioenergia kuin luovuttajalla ja akseptorilla, mutta tällaisia materiaaleja on laajasti saatavilla.

Lisäksi tutkijat huomasivat, että eksipleksejä muodostui vielä kun välike oli 10 nm paksu, mikä on pitkä matka molekyylien mittakaavassa.

"Tämä on ensimmäinen näyttöä siitä, että elektronit ja aukot voivat olla vuorovaikutuksessa näinkin pitkän matkan yli, joten tämä rakenne voi olla hyödyllinen väline myös tutkia ja ymmärtää fysiikan virityksiä ja suunnitella parempia OLEDeja ja orgaanisia aurinkokennoja tulevaisuudessa", toteavat tutkijat yliopistonsa tiedotteessa.
22.05.2019Erittäin nopeita magneettisia muisteja
21.05.2019Happea akkujen kehitykseen
20.05.2019Neulanreiät hologrammeja tuottamaan
17.05.2019Lasketaan nopeammin kvasihiukkasilla
16.05.2019Kondensaattoreita tulostamalla
15.05.2019Kvanttitietotekniikkaa grafeenin ja piin avulla
14.05.2019Suurtaajuussiirto tehostuu grafeenilla
13.05.2019Aivomaista tietotekniikkaa
11.05.2019Kvanttitason mittauksia
09.05.2019Tehokkaampia muistimateriaaleja

Siirry arkistoon »