Hämähäkin aisteja autonomisille koneille

05.06.2019

Purdue-spider-aistit-koneille-anturi-225-t.jpgLuonnossa "hämiksen tunto" aktivoituu lähestyvään kohteeseen liittyvällä voimalla. Tutkijat antavat itsenäisille koneille saman kyvyn antureiden kautta, jotka muuttavat muotoa, kun niihin syntyy sysäys ennalta määrätyllä voimatasolla. (ETH Zürich-kuvat / Hortense Le Ferrand)

Entä jos droneilla ja itsekulkevilla autoilla oli hämähäkkimäisiä antureita? Ne saattaisivat todellakin havaita ja välttää esineitä paremmin koska ne käsittelisivät aistinvaraista informaatiota nopeammin, sanoo Purdue-yliopiston konepajaprofessorina toimiva Andres Arrieta.

Paremmat tunnistamismahdollisuudet mahdollistaisivat sen, että drone voi navigoida vaarallisissa ympäristöissä ja autoissa estää inhimillisten virheiden aiheuttamia onnettomuuksia. Nykyinen huipputeknologia ei käsittele dataa tarpeeksi nopeasti - mutta luonto käsittelee.

Purduen tutkijat ovat rakentaneet hämähäkkien, lepakoiden, lintujen ja muiden eläinten innoittamia antureita, joiden todelliset aistit ovat hermopäätteitä, jotka liittyvät erityisiin neuroneihin, joita kutsutaan mekanoreseptoreiksi.

Mekanosensorit havaitsevat ja käsittelevät vain eläimen selviytymiseen välttämättömiä tietoja. Ne syntyvät hiusten, karvojen tai höyhenten avulla.

Älykkäiden järjestelmien keräämän datan määrä on kasvamassa nopeammin kuin mitä tavanomainen tietojenkäsittely voi käsitellä. Luonnon ei tarvitse kerätä kaikkia dataa; se hyödyntää vain tarvitsemansa, toteavat tutkijat.

Esimerkiksi hämähäkin karvaiset mekanosensorit sijaitsevat sen jaloissa. Kun hämähäkin verkko värähtelee saaliin tai kumppaniin liittyvällä taajuudella, mekanosensorit havaitsevat sen, tuottaen refleksin, johon hämähäkki sitten reagoi hyvin nopeasti. Mekaaniset sensorit eivät havaitsisi matalampaa taajuutta, kuten pölyä verkossa, koska se ei ole tärkeä hämähäkin selviytymiselle.

Ajatuksena olisi integroida samanlaiset anturit suoraan autonomisen koneen kuoreen, kuten lentokoneen siipeen tai auton runkoon. Tutkijat osoittivat, että hämähäkkien karvojen innoittamana suunnitellut mekanosensorit voidaan räätälöidä ennalta määrättyjen voimien havaitsemiseksi.

Anturit, joita tutkijat kehittivät, eivät ainoastaan tunne ja suodata erittäin nopeasti - ne myös laskevat eivätkä tarvitse virtalähdettä.

”Luonnossa laitteiden ja ohjelmistojen välillä ei ole eroa; se on kaikki toisiinsa yhteydessä ”, Arrieta selvittää. ”Anturin on tarkoitus tulkita informaatiota sekä kerätä ja suodattaa sitä.”

Luonnossa, kun tietty voimataso aktivoi karvaiseen mekanosensoriin liittyvät mekanoreseptorit, ne laskevat informaation siirtymällä tilasta toiseen.

Purduen tutkijat suunnittelivat yhteistyössä Singaporen Nanyangin teknillisen yliopiston ja ETH Zürichin kanssa antureitaan samoin ajatuksin ja käyttäen näitä päälle/pois -tiloja tulkitsemaan signaaleja. Älykäs kone reagoisi sitten näiden anturien laskennan mukaan.

Nämä keinotekoiset mekanosensorit kykenevät havaitsemaan, suodattamaan ja laskemaan hyvin nopeasti, koska ne ovat jäykkiä, Arrieta kuvailee. Anturimateriaali on suunniteltu muuttamaan muotoa nopeasti ulkoisen voiman avulla. Muodon muuttaminen saa materiaalin johtavat hiukkaset lähemmäksi toisiaan, mikä mahdollistaa sähkön virtauksen anturin läpi ja kuljettaa signaalin. Tämä signaali informoi miten autonomisen järjestelmän pitäisi vastata.

”Koneoppimisen algoritmien avulla voisimme kouluttaa näitä antureita toimimaan itsenäisesti ja pienimmällä energiankulutuksella”, Arrieta toteaa.

Aiheesta aiemmin:

Keinotekoinen ihon kaltainen hermojärjestelmä

Herkempiä sähköisiä tuntoaisteja

27.12.2023Kvanttipisteanturi ei tarvitse ulkoista teholähdettä
22.12.2023Sähköistävä parannus kuparin johtavuuteen
21.12.2023Yksittäisestä 2D-materiaalista suprajohtava liitos
20.12.2023Nanoresonaattorit avaavat tietä kvanttiverkoille
19.12.2023Metapinta-antenni 6G:lle ja meta-atomeja
18.12.2023Atomintarkkaa 2D-materiaalien integrointia
16.12.2023Kvanttiakuissa rikotaan kausaliteetti
15.12.2023Hierarkkinen generatiivinen mallinnus autonomisille roboteille
14.12.2023Uusi näkemys moniarvoisten akkujen suunnitteluun
13.12.2023Optisella langattomalla ei ehkä enää ole esteitä
13.12.2023Fyysikot kvanttilomittavat yksittäisiä molekyylejä
12.12.2023Edullista tribosähköä ja aurinkokenno puumateriaalista
08.12.20232D-materiaaleista 3D-elektroniikkaa tekoälylaitteistoihin
07.12.2023Fotonikomponentteja RF-signaalin käsittelyyn
06.12.2023Elektromagnoniikasta uusi tiedonkäsittelyn alusta
05.12.2023Uusi alusta kvantti-informaation käsittelyyn
04.12.2023Lämpöä voidaan käyttää laskentaan
01.12.2023Askel biologian ja mikroelektroniikan integroinnille
30.11.2023Josephson-liitosten käyttö supravirran ohjaamiseen
29.11.2023Mikrotekniikkaa ja molekyylikemiaa aurinkokennoille
28.11.2023Materiaalien kehittelyä koneoppisella
27.11.2023Kaksiulotteisia magneetteja tietotekniikalle
25.11.2023Uusi jäähdytysmekanismi jääkaapeille ja jäähdytyslaitteille
24.11.2023Vangita elektroneja 3D-kiteeseen
23.11.2023Pikofotoniikan synty: Kohti aikakidemateriaaleja
22.11.2023Veden ja ilman välinen akustinen viestintä
21.11.2023Uusia kubittiratkaisuja
20.11.2023Erittäin nopeat laserit erittäin pienillä siruilla
18.11.2023Grafeenia, fotosynteesiä ja tekoälyä vihreään energiantuotantoon
17.11.2023Parempaa energiatehokkuutta tietojenkäsittelyyn
16.11.2023Kommunikointia tyhjyyden kanssa
15.11.2023Metamolekyylisen metamateriaalin valmistus
14.11.2023Läpi ahtaankin raon
13.11.2023Outo magneettinen materiaali voi tehdä laskennasta energiatehokasta
11.11.2023Sähköä molekyylien ja ionien tasolta
11.11.2023Neuroverkkoja optisesti ja kvanttihybridinä
09.11.2023Viisi kerrosta grafeenia
08.11.2023Lämmönsiirron hallintaa transistorilla
07.11.2023Metamateriaali yhdistää katkenneet hermot
06.11.2023Valoa valolla ohjaten
04.11.2023Hiilidioksidia polttoaineeksi tehokkaasti
03.11.20233D-tulostustekniikkaa kvanttiantureille
03.11.2023Magnetismia ei-magneettisissa materiaaleissa
02.11.2023Energiatehokas tekoälysiru
01.11.2023Ferrosähköisyyttä piin kanssa ja yhdellä alkuaineella
31.10.2023Magneettisten aaltojen hallinta suprajohteilla
30.10.2023Vakautta ja tehokkuutta perovskiittiaurinkokennoille
28.10.20233D-tulostettu reaktorisydän aurinkopolttoaineille
27.10.2023Tekoälyä kolmiulotteisella datalla
26.10.2023Kvantti-ilmiön sähköinen ohjaus
25.10.2023Verkkoliitäntä kvanttitietokoneille ja radiospektrin kattava ilmaisin
24.10.2023Fotonikiteet taivuttavat valoa aivan kuin painovoima
23.10.2023Nanorakenteet tehostavat litium-rikki akkuja
21.10.2023Vetyä tankaten
20.10.2023Harppaus hiilinanoputkia pidemmälle
19.10.2023Suprajohtava niobium-aaltoputki
19.10.2023Ruoste ja topologia tehostavat magnetismia
17.10.2023Virheiden osoittaminen tehostaa kvanttilaskentaa
16.10.2023Pyrosähköä viruksista
16.10.2023Uusi kubittialusta luodaan atomi kerrallaan
12.10.2023Kvasikiteitä ja ultralaajakaistaista kuvausta
11.10.2023Kontakteja ja seostusta grafeeninanonauhoihin
10.10.2023Magneettinen heterorakenne nopeuttaa tietotekniikkaa
09.10.2023Mullistava väriteknologia ja aurinkoenergia
06.10.2023Timanteista kvanttisimulaattoreita
05.10.2023Kultaa ja perovskiittiä
04.10.2023Tehokkaampaa koulutusta tekoälylle
03.10.2023Lämpötilakuvausta aineen sisältä
02.10.2023Femtosekunnin laseri lasista
29.09.2023Tavoitteena parempia kubitteja
28.09.2023Suola ja kulta tuottavat sähköä
27.09.2023Laaksotroniikka lämpenee
26.09.2023Tekoälyä monisensorisella integroidulla neuronilla
25.09.2023Magneetteja huonelämpöiseen kvanttilaskentaan
23.09.2023Lupaavia vedyn tuotannon tapoja
23.09.2023Kvanttipotentiaalin vapauttaminen monipuolisilla kvanttitiloilla
21.09.2023Terahertsiaaltoja helpommin
20.09.2023Espoosta voi ostaa kvanttitietokoneen
19.09.2023Kvanttianturien tarkkuutta voi edelleen parantaa
18.09.2023Kaksiulotteisia fettejä piikiekolle
16.09.2023Grafeenia, vihreää energiaa ja materiaaleja
15.09.2023Infrapunavaloa kvanttipisteistä
14.09.2023Kohti täydellisiä optisia resonaattoreita
13.09.2023Pidemmän kantaman vedenalaista viestintää
12.09.2023Pisara-akku tasoittaa tietä biointegroinnille
11.09.2023Atomisen tarkkoja antikvanttipisteitä
08.09.2023Outo metalli on nyt vähemmän outo
07.09.2023Yhtä aikaa analoginen ja digitaalinen
06.09.2023Fotoni kuljettaa ja koodaa kvantti-informaatiota
05.09.2023Parempi kyberturvallisuus uudella materiaalilla
04.09.2023Miten valo toimii? Kysy mekaanikolta
01.09.2023Spinin kytkentää kvanttimateriaalissa huonelämpötilassa
31.08.2023Kuditit antavat välähdyksen kvanttitulevaisuudesta
30.08.2023Ledejä piirtäen ja vaihtoehto orgaanisille ledeille
29.08.2023Ioniansoja, fermionprosessori ja kvanttihybridimekaniikkaa
28.08.2023Grafeenin ominaisuuksia grafiittiin
26.08.2023Tehokas fotoreaktori ja kestävä polttokennoarkkitehtuuri
25.08.2023Pienenergian keruuta grafeenin värähtelystä
24.08.2023Valoa magneetin sisään
23.08.2023Hiilipohjaista kvanttitekniikkaa

Näytä lisää »