Metamateriaaleja ja magnoniikkaa

04.09.2019

MIPT-metamateriaaleja-magnoniikalle-300-t.jpgKaavioesitys metamateriaalin läpi kulkevista spinaalloista sekä tuloksena olevasta aaltospektristä, mikä kuvastaa keinotekoisen kiteen ominaisuuksia.

Fyysikot Venäjältä ja Euroopasta ovat osoittaneet reaalisen mahdollisuuden käyttää suprajohde/ferromagneettista metamateriaalin järjestelmiä magnonisten kiteiden luomiseksi. Sellaiset olisivat piin jälkeisen elektroniikan spinaaltoja käyttävien piirirakenteiden perusta.

Magnoniikka tutkii mahdollisuuksia käyttää spinaaltoja informaation siirtämiseen ja käsittelemiseen. Kun fotoniikka käsittelee fotoneja ja sähkömagneettisia aaltoja, magnoniikan painopiste on spinaalloilla eli magnoneilla, jotka ovat magneettisten momenttien suunnan harmonisia värähtelyjä.

Ferromagneettisissa materiaaleissa elektronien magneettiset momentit eli niiden spinit, kohdistuvat magneettikentän mukaisesti. Magneettisessa järjestelmässä havaittuja spinien suuntien aaltoja kutsutaan spinaalloiksi.

Magnoniikkaa pidetään lupaavana tutkimusalueena piin jälkeisessä elektroniikassa, koska spinaalloilla on useita etuja esimerkiksi mikroaaltofotoneihin nähden. Spinaaltoja voidaan esimerkiksi ohjata ulkoisella magneettikentällä. Mikroaaltojen, jotka ovat olennaisesti sähkömagneettisia aaltoja, keskimääräinen aallonpituus on yksi senttimetri, kun taas samalla mikroaaltotaajuuksien alueella olevien spinaaltojen aallonpituudet ovat mikrometrejä. Siksi näitä hallittavissa olevia aaltoja voidaan käyttää rakentamaan erittäin pienikokoisia mikrorakenteita mikroaaltosignaaleille.

Magneettiset kiteet ovat tärkeimpiä osajärjestelmiä, joita tarvitaan spinaaltojen signaaleja käyttävän laitteen rakentamiseksi. Näillä kiteillä on laaja valikoima potentiaalisia sovelluksia, kuten taajuussuodattimet, hilakytkimet, aaltojohtimet ja transistoreita vastaavat magoniset rakenteet.

Tämän tutkimuksen keskeisin tulos on, että tutkijat ovat osoittaneet mahdolliseksi työskennellä magonisten kiteiden parissa käyttäen suprajohde/ferromagneetti -hybridijärjestelmää. Samalla arkkitehtuurissa havaittiin erikoinen magonikaistarakenne, jolle on tunnusomaista kiellettyjen kaistojen esiintyminen gigahertsin taajuusalueella.

Tutkittu järjestelmä koostui säännöllisestä suprajohtavasta niobium (Nb) -rakenteesta, joka oli asetettu ferromagneettisen Ni80Fe20-permalloy (Py) -ohutkalvon päälle.

Piipohjaisten mikroelektronisten komponenttien kehittämisen teknologinen prosessi on saavuttamassa saatavissa olevien kokojen teoreettisen rajan.

Tässä suhteessa tutkitut suprajohde/ferromagneettijärjestelmät tarjoavat hyvät näkymät aaltoelektroniikalle, koska suprajohtavien materiaalien kriittiset koot ovat alle mikrometrien. Siksi on mahdollista tehdä suprajohtavista elementeistä hyvin pieniä.

Tutkimuksen kirjoittajat uskovat tutkimuksensa tulosten olevan käyttökelpoisia mikroaaltoelektroniikassa ja magnoniikassa, mukaan lukien kvanttimagnoniikan ala. Mahdollisten sovellusten valikoima on kuitenkin edelleen rajallinen, koska järjestelmä ei toimi huonelämpötilassa.

Aiheesta aiemmin:

Miten olisi magnonielektroniikka?

Kaksiulotteinen piiri magneettisilla kvasipartikkeleilla

13.09.2019Tehokkaampaa sähköpolttoaineiden tuotantoa
12.09.2019Ensimmäinen monimutkainen kvanttiteleportaatio
11.09.2019Energian talteenottoa piipiiriltä
10.09.2019Uudenlainen pinnoite litium-metalli akuille
09.09.2019Uusi eristetekniikka pienemmille siruille
06.09.2019Hiilinanoputkia ja grafeenia
05.09.2019Nikkelioksidistako suprajohde?
04.09.2019Metamateriaaleja ja magnoniikkaa
03.09.2019Gallium-oksidi tehotransistoreita ennätysarvoilla
02.09.2019Muutos magneetissa itsessään
30.08.2019Transistori pellavalangasta
29.08.2019Robotti ottaa ajotarkkuuden hallintaansa
28.08.2019Enemmän irti MEMS-tekniikasta
27.08.2019Ensimmäinen havainto eksitonisesta eristeestä
26.08.2019Opto-elektroninen siru jäljittelee hermosoluja
23.08.2019Valoa vangiten ja suunnaten
22.08.2019Navigoi ja paikallista kuin pöllö
21.08.2019Uusia puolijohteita tehoelektroniikkaan
20.08.2019Biohajoavia mikroresonaattoreita
19.08.2019Uutta tekniikkaa aurinkosähkölle
16.08.2019E-tekstiilejä ja metamateriaaleja
15.08.2019Valoa nanopiireille
14.08.2019Tehokkaampia kvanttiantureita
13.08.2019Tsunami mikropiirillä
12.08.2019Tekniikkaa kuudennen sukupolven verkoille
09.08.2019Kvanttimikrofonista kvanttitietokoneeseen
08.08.2019Paksummat OLEDit parantavat näyttötekniikkaa
07.08.2019Älylasi, joka ei tarvitse sähköä
06.08.2019Sähköä ruosteen avulla
05.08.2019Erittäin ohuita transistoreita
01.08.2019Spinvirta välittää käyttövoimaa
26.07.2019Dramaattista lisäystä aurinkokennoihin
19.07.2019Luminenssilamput kehittyvät
12.07.2019Atomista audiotallennusta
04.07.2019Valosähköisiä nanoputkia
03.07.2019Informaation teleporttausta timantissa
02.07.2019Orgaanisia katodeja tehokkaille akuille
28.06.2019Spintroniikkaa ja muistitekniikkaa
27.06.2019Edistysaskeleita kvanttitietotekniikalle
26.06.2019Oksidimateriaalit kaupallistuvat
25.06.2019Lasertekniikalla grafeenia hyötykäyttöön
24.06.2019Ionitekniikkaa kondensaattoreihin
20.06.2019Tehokkaampia tehopiiritekniikoita
19.06.2019Uutta tekniikkaa 2D-materiaalin venytyksellä
18.06.2019Bioparisto IoDT-sovelluksille
17.06.2019Uusia ovia nanofotoniikan maailmaan
14.06.2019Biologian avulla sähkö varastoon ja hiili kiertoon
13.06.2019Orgaaniset laserdiodit unelmasta todellisuuteen
12.06.2019Uusia ominaisuuksia elektroniikalle
11.06.2019Uusi laite pakkaa enemmän valokuituun
10.06.2019Tutkijat yrittävät luoda ihmisen kaltaista koneajattelua
07.06.2019Vaihtoehtoja elektroniikan vauhdittamiseen
06.06.2019Hiiliseostus muuttaa puolijohtavaa 2D-materiaalia
05.06.2019Hämähäkin aisteja autonomisille koneille
04.06.2019Elektronin geometria määritelty
03.06.2019Fyysikot löytäneet uudenlaisia spin-aaltoja
30.05.2019Pesunkestävää kangaselektroniikkaa
29.05.2019Uusia ratkaisuja kaoottisille värähtelypiireille
27.05.2019Magneettista oppimista tietojenkäsittelyyn
24.05.2019Auttaa robotteja muistamaan
23.05.2019Ultrapuhdas valmistustapa 2D-transistoreille
22.05.2019Erittäin nopeita magneettisia muisteja
21.05.2019Happea akkujen kehitykseen
20.05.2019Neulanreiät hologrammeja tuottamaan
17.05.2019Lasketaan nopeammin kvasihiukkasilla
16.05.2019Kondensaattoreita tulostamalla
15.05.2019Kvanttitietotekniikkaa grafeenin ja piin avulla
14.05.2019Suurtaajuussiirto tehostuu grafeenilla
13.05.2019Aivomaista tietotekniikkaa
11.05.2019Kvanttitason mittauksia
09.05.2019Tehokkaampia muistimateriaaleja
08.05.2019Lämpösähköä spinien tasolta
07.05.2019Suurin ja nopein optinen kytkinpiiri
06.05.2019Tehokkaita lämpöjohteita nanoelektroniikalle
03.05.2019Monenlaista ledien värien hallintaa
02.05.2019Staattinen negatiivinen kondensaattori
30.04.2019Kompaktia pitkäaaltoista viestintää
29.04.2019Nanoklustereista puolijohteita
26.04.2019Uudenlainen spintransistori
25.04.2019Aurinkoa seuraten
24.04.2019Kvanttimateriaali aivojen kaveriksi
23.04.2019Uusia rakenteita Litium-ioni akuille
18.04.2019Spinaaltoja nanoelektroniikkaan
17.04.2019Huonelämpötilassa toimivia keinotekoisia atomeja
16.04.2019Uusi ihmemateriaali: yksittäisiä 2D-fosforeeninauhoja
15.04.2019Eksoottisia kvanttivaikutuksia
12.04.2019Fononeja suunnaten ja laseroiden
11.04.2019Kuparipohjainen vaihtoehto kullalle
09.04.2019Vanhassa vara parempi
08.04.2019Mainostilan esittely
08.04.2019Tehokkaita ledejä nanolangasta
05.04.2019Nanogeneraattori kankaalle 3D-tulostuksella
03.04.2019Topologiaa valoaalloille
02.04.2019Kolme mittausta yhdellä selluanturilla
01.04.2019Monipuolisia orgaanisia transistoreita
29.03.2019Kvanttisimulointia valolla
28.03.2019Sähköä syöviä mikrobeja
27.03.2019Proteiini tarjoaa vaihtoehtoja ionijohteille
26.03.2019Metamateriaali ratkoo yhtälöitä
25.03.2019Molekyylimoottorit toimivat yhdessä

Näytä lisää »